Preview

Бюллетень сибирской медицины

Расширенный поиск

Регуляция объема клеток эпителия в норме и при патологии

https://doi.org/10.20538/1682-0363-2017-4-42-60

Полный текст:

Аннотация

Способность регулировать объем в ответ на изменения внутриклеточной и внеклеточной осмолярности среды является одной из фундаментальных функций клеток. Изменения клеточного объема приводят к запуску множества внутриклеточных сигнальных каскадов, активирующих защитные и адаптивные механизмы. Как правило, регулирование объема происходит за счет транспорта осмолитов, результатом которого является восстановление объема внутриклеточной воды и нормализация клеточных функций. В данном обзоре показано физиологическое значение процессов регуляторного уменьшения объема и регуляторного увеличения объема в ответ на флуктуации вне- и внутриклеточной осмолярности на примере эпителиальных клеток. 

Об авторах

О. О. Пономарчук
Московский государственный университет имени М.В. Ломоносова; Научно-исследовательский центр Монреальского университета
Россия

биологический факультет

119991, г. Москва, Ленинские Горы, 1/12

научно-исследовательский центр 

H2X 0A9, г. Монреаль, ул. Сент-Дени, 900 



Г. В. Максимов
Московский государственный университет имени М.В. Ломоносова
Россия

биологический факультет

119991, г. Москва, Ленинские Горы, 1/12



С. Н. Орлов
Московский государственный университет имени М.В. Ломоносова
Россия

д-р мед. наук, профессор, биологический факультет

119991, г. Москва, Ленинские Горы, 1/12



Список литературы

1. Mongin A.A. and Orlov S.N. Mechanisms of cell volume regulation and possible nature of the cell volume sensor // Pathophysiology. 2001; 8 (2): 77–88.

2. Macknight A.D. and Leaf A. Regulation of cellular volume in Membrane Physiology. Springer, 1987: 311–328.

3. Lang, F. et al. Functional significance of cell volume regulatory mechanisms // Physiological reviews. 1998; 78 (1): 247–306.

4. Murao H. et al. Cell shrinkage evoked by Ca2+‐free solution in rat alveolar type II cells: Ca2+ regulation of Na+–H+ exchange // Experimental physiology. 2005; 90 (2): 203–213.

5. Hosoi K. et al. Terbutaline-induced triphasic changes in volume of rat alveolar type II cells: the role of cAMP // The Japanese journal of physiology. 2002; 52 (6): 561– 572.

6. Hosoi K. et al., Delayed shrinkage triggered by the Na+– K+ pump in terbutaline‐stimulated rat alveolar type II cells // Experimental physiology. 2004; 89 (4): 373–385.

7. Hoffmann E.K., Lambert I.H. and Pedersen S.F. Physiology of cell volume regulation in vertebrates // Physiol Rev. 2009; 89 (1): 193–277.

8. MacLeod R. and Hamilton J. Ca 2+/calmodulin kinase II and decreases in intracellular pH are required to activate K+ channels after substantial swelling in villus epithelial cells // Journal of Membrane Biology. 1999; 172 (1): 59–66.

9. Fernández-Fernández J.M. et al. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line // American Journal of Physiology-Cell Physiology. 2002; 283 (6): C1705–C1714.

10. Vázquez E., Nobles M. and Valverde M.A. Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels // Proceedings of the National Academy of Sciences. 2001; 98 (9): 5329–5334.

11. Wu X. et al. Regulatory volume decrease by SV40- transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release // Journal of Membrane Biology. 1997; 158 (2): 127–136.

12. Harron S.A. et al. Volume regulation in the human airway epithelial cell line Calu-3 // Canadian journal of physiology and pharmacology. 2009; 87 (5): 337–346.

13. Jentsch T.J. VRACs and other ion channels and transporters in the regulation of cell volume and beyond // Nature Reviews Molecular Cell Biology. 2016; 17 (5): 293–307.

14. Hazama A. and Okada Y. Ca2+ sensitivity of volume‐ regulatory K+ and Cl‐channels in cultured human epithelial cells // The Journal of Physiology. 1988; 402 (1): 687–702.

15. Hoffmann E.K., Holm N.B. and Lambert I.H. Functions of volume‐sensitive and calcium‐activated chloride channels // IUBMB life. 2014; 66 (4): 257–267.

16. Mummery J.L., Killey J. and Linsdell P. Expression of the chloride channel CLC-K in human airway epithelial cells // Canadian journal of physiology and pharmacology. 2005; 83 (12): 1123–1128.

17. Almaça J. et al. TMEM16 proteins produce volumeregulated chloride currents that are reduced in mice lacking TMEM16A // Journal of Biological Chemistry. 2009; 284 (42): 28571–28578.

18. Xie C. et al. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia // The FASEB Journal. 2016; 30 (4): 1579– 1589.

19. Missan S. et al. Contribution of KCNQ1 to the regulatory volume decrease in the human mammary epithelial cell line MCF-7 // American Journal of Physiology-Cell Physiology. 2007; 293 (3): C1010–C1019.

20. Lan W.Z., Wang P.Y. and C.E. Hill, Modulation of hepatocellular swelling-activated K+ currents by phosphoinositide pathway-dependent protein kinase C // American Journal of Physiology-Cell Physiology. 2006; 291 (1): C93–C103.

21. Dube L., Parent L. and Sauve R. Hypotonic shock activates a maxi K+ channel in primary cultured proximal tubule cells // American Journal of Physiology-Renal Physiology. 1990; 259 (2): F348–F356.

22. Urbach V. et al. Mechanosensitive calcium entry and mobilization in renal A6 cells // The Journal of membrane biology. 1999; 168 (1): 29–37.

23. Wang J., S. Morishima and Y. Okada. IK channels are involved in the regulatory volume decrease in human epithelial cells // American Journal of Physiology-Cell Physiology. 2003; 284 (1): C77–C84.

24. Lauf P.K. et al., Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells // American Journal of Physiology-Cell Physiology. 2008; 294 (3): C820–C832.

25. Roman R. et al. Molecular characterization of volumesensitive SKCa channels in human liver cell lines // American Journal of Physiology-Gastrointestinal and Liver Physiology. 2002; 282 (1): G116–G122.

26. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters // Physiological reviews. 2005; 85 (2): 423–493.

27. Hebert S.C., Mount D.B. and Gamba G. Molecular physiology of cation-coupled Cl− cotransport: the SLC12 family // Pflügers Archiv. 2004; 447 (5): 580–593.

28. Mercado A. et al. Functional comparison of the K+-Cl− cotransporters KCC1 and KCC4 // Journal of Biological Chemistry. 2000; 275 (39): 30326–30334.

29. Race J.E. et al. Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter // American Journal of Physiology-Cell Physiology. 1999; 277 (6): C1210–C1219.

30. Capó-Aponte J.E., Iserovich P. and Reinach P. Characterization of regulatory volume behavior by fluorescence quenching in human corneal epithelial cells // Journal of Membrane Biology. 2005; 207 (1): 11–22.

31. Strange K., Emma F. and P.S. Jackson. Cellular and molecular physiology of volume-sensitive anion channels // American Journal of Physiology-Cell Physiology. 1996; 270 (3): C711–C730.

32. Kirk K. and Strange K. Functional properties and physiological roles of organic solute channels // Annual Review of Physiology. 1998; 60 (1): 719–739.

33. Holm J.B., Grygorczyk R. and Lambert I.H. Volumesensitive release of organic osmolytes in the human lung epithelial cell line A549: role of the 5-lipoxygenase // American Journal of Physiology-Cell Physiology. 2013; 305 (1): C48–C60.

34. Di Ciano-Oliveira C. et al. Is myosin light-chain phosphorylation a regulatory signal for the osmotic activation of the Na+-K+-2Cl− cotransporter? // American Journal of Physiology-Cell Physiology. 2005; 289 (1): C68–C81.

35. Russell J.M. Sodium-potassium-chloride cotransport // Physiological Reviews. 2000; 80 (1): 211–276.

36. O’Neill, W.C., Physiological significance of volume-regulatory transporters // American Journal of Physiology-Cell Physiology. 1999; 276 (5): C995– C1011.

37. Bookstein C. et al. Characterization of the rat Na+/ H+ exchanger isoform NHE4 and localization in rat hippocampus // American Journal of Physiology-Cell Physiology. 1996; 271 (5): C1629–C1638.

38. Bookstein, C. et al. A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity // Journal of Biological Chemistry. 1994; 269: 29704–29704.

39. Good D.W., Di Mari J.F. and B.A. Watts. Hyposmolality stimulates Na+/H+ exchange and HCO3− absorption in thick ascending limb via PI 3-kinase // American Journal of Physiology-Cell Physiology. 2000; 279 (5): C1443– C1454.

40. Soleimani M. et al. Effect of high osmolality on Na+/H+ exchange in renal proximal tubule cells // Journal of Biological Chemistry. 1994; 269 (22): 15613–15618.

41. Alexander R.T. et al. Membrane curvature alters the activation kinetics of the epithelial Na+/H+ exchanger, NHE3 // Journal of Biological Chemistr. 2007; 282 (10): 7376–7384.

42. Wehner, F. and H. Tinel, Role of Na+ conductance, Na+‐H+ exchange, and Na+‐K+‐2Cl− symport in the regulatory volume increase of rat hepatocytes // The Journal of Physiology. 1998; 506 (1): 127–142.

43. Pedersen S. et al. Physiology and pathophysiology of Na+/H+ exchange and Na+-K+-2Cl− cotransport in the heart, brain, and blood // American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2006; 291 (1): R1–R25.

44. Haberich F., Aziz O. and Nowacki P. Über einen osmoreceptorisch tätigen Mechanismus in der Leber // Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere. 1965; 285 (1): 73–89.

45. Beck F.X., Dörge A. and Thurau K. Cellular osmoregulation in renal medulla // Kidney and Blood Pressure Research. 1988; 11 (3–5): 174–186.

46. Bierens J.J. et al. Physiology of drowning: a review // Physiology. 2016; 31 (2): 147–166.

47. De Boer J. et al. The effects of aspirated and swallowed water in drowning // Anesthesiology. 1970; 32 (1): 51–59.

48. Lambert I., Hoffmann E. and Pedersen S. Cell volume regulation: physiology and pathophysiology // Acta physiologica. 2008; 194 (4): 255–282.

49. Burg M.B., Kwon E.D. and Kültz D. Osmotic regulation of gene expression // The FASEB Journal. 1996; 10 (14): 1598–1606.

50. Burg M.B. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells // Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 1994; 268 (2): 171–175.

51. Beck F. et al. Intra-and extracellular element concentrations of rat renal papilla in antidiuresis // Kidney international. 1984; 25 (2): 397–403.

52. Pedersen S.F., Hoffmann E.K. and I. Novak. Cell volume regulation in epithelial physiology and cancer // Frontiers in physiology. 2013. 4: 233.

53. Shiima‐Kinoshita C. et al. β2‐adrenergic regulation of ciliary beat frequency in rat bronchiolar epithelium: potentiation by isosmotic cell shrinkage // The Journal of physiology. 2004; 554 (2): 403–416.

54. Reuss L. and Cotton C.U. Volume regulation in epithelia: transcellular transport and cross-talk // Cellular and Molecular Physiology of Cell Volume Regulation. 1994: 31–47.

55. Lang F., Messner G. and Rehwald W. Electrophysiology of sodium-coupled transport in proximal renal tubules // American Journal of Physiology-Renal Physiology. 1986; 250 (6): F953–F962.

56. Harvey B.J. Crosstalk and epithelial ion transport. Current opinion in nephrology and hypertension. 1994; 3 (5): 523–528.

57. Schultz S. and Dubinsky W. Sodium absorption, volume control and potassium channels: in tribute to a great biologist // Journal of Membrane Biology. 2001; 184 (3): 255–261.

58. Furlong T.J. and Spring K.R. Mechanisms underlying volume regulatory decrease by Necturus gallbladder epithelium // American Journal of Physiology-Cell Physiology. 1990; 258 (6): C1016–C1024.

59. Breton S. et al. Cell volume increases of physiologic amplitude activate basolateral K and CI conductances in the rabbit proximal convoluted tubule // Journal of the American Society of Nephrology. 1996; 7 (10): 2072–2087.

60. Bachmann O. et al. Basolateral ion transporters involved in colonic epithelial electrolyte absorption anion secretion and cellular homeostasis // Acta physiologica. 2011; 201(1): 33–46.

61. Verkman A., Song Y. andThiagarajah J.R. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease // American Journal of Physiology-Cell Physiology. 2003; 284 (1): C2–C15.

62. Greger R. et al. The Na+ 2Cl–K+ cotransporter in the rectal gland of Squalus acanthias is activated by cell shrinkage // Pflügers Archiv European Journal of Physiology. 1999; 438 (2): 165–176.

63. Foskett J.K., Wong M.M. and Robertson M.A. Isosmotic modulation of cell volume and intracellular ion activities during stimulation of single exocrine cells // Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 1994; 268 (2): 104–110.

64. Wangemann P. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells // Hearing research. 1995; 90 (1): 149–157.

65. Dissing S. et al. Inhibitory effects of amitriptyline on the stimulation-induced Ca2+ increase in parotid acini // European journal of pharmacology. 1990; 177 (1–2): 43–54.

66. Sun A.M. and Hebert S.C. Volume regulation in renal medullary nephron segments // Cellular and Molecular Physiology of Cell Volume Regulation, 1993: 49.

67. Ussing H. and Eskesen K. Mechanism of isotonic water transport in glands // Acta Physiologica. 1989; 136 (3): 443–454.

68. Hoffmann E.K. and Ussing H.H. Membrane mechanisms in volume regulation in vertebrate cells and epithelia in Membrane transport in biology. Springer, 1992: 317–399.

69. Nedergaard S., Larsen E.H. and Ussing H.H. Sodium recirculation and isotonic transport in toad small intestine // The Journal of membrane biology. 1999; 168 (3): 241–251.

70. Larsen E.H. and Møbjerg N. Na+ recirculation and isosmotic transport // The Journal of membrane biology. 2006; 212 (1): 1–15.

71. Larsen E.H., Sørensen J.B. and Sørensen J.N. Analysis of the sodium recirculation theory of solute‐coupled water transport in small intestine // The Journal of physiology. 2002; 542 (1): 33–50.

72. Wehner F. et al. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction, in Reviews of physiology, biochemistry and pharmacology. Springer, 2003: 80.

73. Häussinger D. et al. Involvement of microtubules in the swelling-induced stimulation of transcellular taurocholate transport in perfused rat liver // Biochemical Journal. 1993; 291 (2): 355–360.

74. Wettstein M., Noe B. and Häussinger D. Metabolism of cysteinyl leukotrienes in the perfused rat liver: the influence of endotoxin pretreatment and the cellular hydration state // Hepatology. 1995; 22 (1): 235–240.

75. Gillin A.G., Star R.A. and Sands J.M. Osmolarity-stimulated urea transport in rat terminal IMCD: role of intracellular calcium // American Journal of Physiology-Renal Physiology.1993; 265 (2): F272–F277.

76. Green R.B. et al. Hyperosmolality inhibits sodium absorption and chloride secretion in mIMCD-K2 cells // American Journal of Physiology-Renal Physiology. 1996; 271 (6): F1248–F1254.

77. Nakahari T. et al. Osmotic flow transients during acetylcholine stimulation in the perfused rat submandibular gland // Experimental physiology. 1997; 82 (1): 55–70.

78. Gao Y. and Vanhoutte P.M. Hypotonic solutions induce epithelium-dependent relaxation of isolated canine bronchi // Lung. 1992; 170 (6): p. 339–347.

79. Lang F. et al. Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death, in Mechanisms and Significance of Cell Volume Regulation. Karger Publishers, 2006: 142–160.

80. Needham D. Possible role of cell cycle-dependent morphology, geometry, and mechanical properties in tumor cell metastasis // Cell Biochemistry and Biophysics. 1991; 18 (2): 99–121. H.

81. Takahashi A., Yamaguchi H. and Miyamoto. Change in K+ current of HeLa cells with progression of the cell cycle studied by patch-clamp technique // American Journal of Physiology-Cell Physiology. 1993; 265 (2): 328–336.

82. Ritter M. and Wöll Е. Modification of cellular ion transport by the Ha-ras oncogene: Steps towards malignant transformation // Cellular Physiology and Biochemistry. 1996; 6 (5): 245–270.

83. Bianchini L. and Grinstein S. Regulation of volume-modulating ion transport systems by growth promoters, in Advances in comparative and environmental physiology. Springer, 1993: 249–277.

84. Palfrey H.C. and O’Donnell M.E. Characteristics and regulation of the Na/K/2CI cotransporter // Cellular Physiology and Biochemistry. 1992; 2 (6): 293307.

85. Dubois J.-M. and Rouzaire-Dubois B. The influence of cell volume changes on tumour cell proliferation // European Biophysics Journal. 2004; 33 (3): 227–232.

86. Rouzaire‐Dubois B., O’regan S. and Dubois J.M. Cell size‐dependent and independent proliferation of rodent neuroblastoma x glioma cells // Journal of cellular physiology. 2005; 203 (1): 243–250.

87. Burg M.B. Response of renal inner medullary epithelial cells to osmotic stress // Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2002; 133 (3): 661–666.

88. Lang F. et al. Cell volume in the regulation of cell proliferation and apoptotic cell death // Cellular Physiology and Biochemistry. 2000; 10 (5-6): 417–428.

89. Michea L. et al. Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells // American Journal of Physiology-Renal Physiology. 2000; 278 (2): F209–F218.

90. Klausen T.K. et al. Monovalent ions control proliferation of Ehrlich Lettre ascites cells // American Journal of Physiology-Cell Physiology. 2010; 299 (3): C714–C725.

91. Schreiber R. Ca2+ signaling, intracellular pH and cell volume in cell proliferation // The Journal of membrane biology. 2005; 205 (3): 129.

92. Wöll E. et al. The role of calcium in cell shrinkage and intracellular alkalinization by bradykinin in Ha‐ras oncogene expressing cells // FEBS letters. 1993; 322 (3): 261–265.

93. Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis // Pflügers Archiv. 2004; 448 (3): 274–286.

94. Wang S. et al. Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF‐7 human breast carcinoma cell line // Journal of cellular physiology. 1998; 176 (3): 456–464.

95. Felipe A. et al. Potassium channels: new targets in cancer therapy // Cancer detection and prevention. 2006; 30 (4): 375–385.

96. Patel A.J. and Lazdunski M. The 2P-domain K+ channels: role in apoptosis and tumorigenesis // Pflügers Archiv. 2004; 448 (3): 261–273.

97. Voloshyna I. et al. TREK-1 is a novel molecular target in prostate cancer // Cancer research. 2008; 68 (4): 1197–1203.

98. Pardo L.A. et al. Approaches targeting Kv10. 1 open a novel window for cancer diagnosis and therapy // Current medicinal chemistry. 2012; 19 (5): 675–682.

99. Gómez-Varela D. et al. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity // Cancer Research. 2007; 67 (15): 7343–7349.

100. Jäger H. et al. Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro // Molecular pharmacology. 2004; 65 (3): 630–638.

101. Chen L. et al. Roles of volume‐activated Cl− currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells // Cell proliferation. 2007; 40 (2): 253–267.

102. Varela D. et al. NAD (P) H oxidase-derived H2O2 signals chloride channel activation in cell volume regulation and cell proliferation // Journal of Biological Chemistry. 2004; 279 (14): 13301–13304.

103. Wang L., Chen L. and Jacob T. ClC-3 expression in the cell cycle of nasopharyngeal carcinoma cells // Sheng li xue bao: [Acta physiologica Sinica]. 2004; 56 (2): 230–236.

104. Liu W. et al. Inhibition of Ca2+-activated Cl− channel ANO1/TMEM16A expression suppresses tumor growth and invasiveness in human prostate carcinoma // Cancer letters. 2012; 326 (1): 41–51.

105. Duvvuri U. et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression // Cancer research. 2012; 72 (13): 3270–3281.

106. Britschgi A. et al. Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling // Proceedings of the National Academy of Sciences. 2013; 110 (11): E1026–E1034.

107. Kunzelmann K. Ion channels in regulated cell death // Cellular and Molecular Life Sciences. 2016; 73 (11- 12): 2387–2403.

108. Blikslager A.T. et al. Restoration of barrier function in injured intestinal mucosa // Physiological reviews. 2007; 87 (2): 545–564.

109. Dignass A.U. Mechanisms and modulation of intestinal epithelial repair // Inflammatory bowel diseases. 2001; 7 (1): 68–77.

110. Lohela M. and Werb Z. Intravital imaging of stromal cell dynamics in tumors // Current opinion in genetics & development. 2010; 20 (1): 72–78.

111. Schwab A. and Stock C. Ion channels and transporters in tumour cell migration and invasion // Phil. Trans. R. Soc. B. 2014; 369 (1638): 20130102.

112. Schwab A. et al. Role of ion channels and transporters in cell migration // Physiological reviews. 2012; 92 (4): 1865–1913.

113. Cooper J.A. The role of actin polymerization in cell motility // Annual Review of Physiology. 1991; 53 (1): 585–605.

114. Stossel T.P. On the crawling of animal cells // Science - New York then Washington. 1993; 260: 1086–1086.

115. Jakab M. and Ritter M. Cell volume regulatory ion transport in the regulation of cell migration, in Mechanisms and Significance of Cell Volume Regulation // Karger Publishers. 2006; 161–180.

116. Schwab A. et al. Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume // Pflügers Archiv European Journal of Physiology. 1999; 438 (3): 330–337.

117. Ridley A.J. et al. Cell migration: integrating signals from front to back // Science. 2003; 302 (5651): 1704– 1709.

118. Chiang Y. et al. EGF upregulates Na+/H+ exchanger NHE1 by post‐translational regulation that is important for cervical cancer cell invasiveness // Journal of cellular physiology. 2008; 214 (3): 810–819.

119. Lauritzen G. et al. The Na+/H+ exchanger NHE1, but not the Na+, cotransporter NBCn1, regulates motility of MCF7 breast cancer cells expressing constitutively active ErbB2 // Cancer letters. 2012; 317 (2): 172–183.

120. Lagana A. et al. Regulation of the formation of tumor cell pseudopodia by the Na (+)/H (+) exchanger NHE1 // Journal of cell science. 2000; 113 (20): 3649–3662.

121. Stock C. et al. pH nanoenvironment at the surface of single melanoma cells // Cellular Physiology and Biochemistry. 2007; 20 (5): 679–686.

122. Ritter M. et al. Effect of inhibitors of Na+/H+‐exchange and gastric H+/K+ ATPase on cell volume, intracellular pH and migration of human polymorphonuclear leucocytes // British journal of pharmacology. 1998; 124 (4): 627–638.

123. Haas B.R. and Sontheimer H. Inhibition of the sodium-potassium-chloride cotransporter isoform-1 reduces glioma invasion // Cancer research. 2010; 70 (13): 5597–5606.

124. Schwab A. et al. Oscillating activity of a Ca (2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells // Journal of Clinical Investigation. 1994; 93 (4): 1631.

125. Ransom C.B., O’Neal J.T. and Sontheimer H. Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells // Journal of Neuroscience. 2001; 21 (19): 7674–7683.

126. Soroceanu L., Manning T.J. and Sontheimer H. Modulation of glioma cell migration and invasion using Cl− and K+ ion channel blockers // Journal of Neuroscience. 1999; 19 (14): 5942–5954.

127. Mao J. et al. Blockage of volume-activated chloride channels inhibits migration of nasopharyngeal carcinoma cells // Cellular Physiology and Biochemistry. 2007; 19 (5-6): 249–258.

128. Chen Y.-F. et al. Motor Protein–Dependent Membrane Trafficking of KCl Cotransporter-4 Is Important for Cancer Cell Invasion // Cancer research. 2009; 69 (22): 8585–8593.

129. Rao J.N. et al. Activation of K+ channels and increased migration of differentiated intestinal epithelial cells after wounding // American Journal of Physiology-Cell Physiology. 2002; 282 (4): C885–C898.

130. Shin V.Y. et al. Nicotine suppresses gastric wound repair via the inhibition of polyamine and K+ channel expression // European journal of pharmacology. 2002; 444 (1): 115–121.

131. Trinh N.T.N. et al. EGF and K+ channel activity control normal and cystic fibrosis bronchial epithelia repair // American Journal of Physiology-Lung Cellular and Molecular Physiology. 2008; 295 (5): L866–L880.

132. Potier M. et al. Altered SK3/KCa2. 3-mediated migration in adenomatous polyposis coli (Apc) mutated mouse colon epithelial cells // Biochemical and biophysical research communications. 2010; 397 (1): 42–47.

133. Yang H. et al. Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 (TRPV1) induces differential responses in corneal epithelial cells // Experimental eye research. 2010; 91 (3): 462–471.

134. Waning J. et al. A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration // Cell calcium. 2007; 42 (1): 17–25.

135. Hu J. and Verkman A. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels // The FASEB Journal. 2006; 20 (11): 1892–1894.

136. Loitto V.M., Karlsson T. and Magnusson K.E. Water flux in cell motility: expanding the mechanisms of membrane protrusion // Cell motility and the cytoskeleton. 2009; 66 (5): 237–247.

137. Verkman A.S. Aquaporins at a glance // J. Cell. Sci. 2011; 124 (13): 2107–2112.

138. Hara-Chikuma M. and Verkman A. Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule // Journal of the American Society of Nephrology. 2006; 17 (1): 39–45.

139. Levin M.H. and Verkman A. Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization // Investigative ophthalmology & visual science. 2006; 47 (10): 4365–4372.

140. Hayashi S. et al. Involvement of aquaporin-1 in gastric epithelial cell migration during wound repair // Biochemical and biophysical research communications. 2009; 386 (3): 483–487.

141. Ruiz-Ederra J. and Verkman A. Aquaporin-1-facilitated keratocyte migration in cell culture and in vivo corneal wound healing models // Experimental eye research. 2009; 89 (2): 159–165.

142. Chen Z. et al. Impaired migration and cell volume regulation in aquaporin 5-deficient SPC-A1 cells // Respiratory physiology & neurobiology. 2011; 176 (3): 10–117.

143. Saadoun S. et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formationь // Journal of cell science. 2005; 118 (24): 5691–5698.

144. Chemaly A. et al. VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification // Journal of Experimental Medicine. 2010; 207 (1): 129–139.

145. Lang F. and Hoffmann E.K. Role of ion transport in control of apoptotic cell death // Comprehensive Physiology. 2012;

146. Pasantes-Morales H. Channels and volume changes in the life and death of the cell // Molecular pharmacology. 2016; 90 (3): 358–370.

147. Trump B. and Berezesky I. Calcium-mediated cell injury and cell death // The FASEB Journal. 1995; 9 (2): p. 219–228.

148. Lehen’kyi V.Y. et al. Ion channnels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis // American Journal of Physiology-Cell Physiology. 2011; 301 (6): C1281–C1289.

149. Poulsen K.A. et al. Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels // American Journal of Physiology-Cell Physiology. 2010; 298 (1): C14–C25.

150. Porcelli A. et al. Apoptosis induced by staurosporine in ECV304 cells requires cell shrinkage and upregulation of Cl− conductance // Cell Death & Differentiation. 2004; 11 (6): 655–662.

151. Ise T. et al. Roles of volume-sensitive Cl− channel in cisplatin-induced apoptosis in human epidermoid cancer cells // The Journal of membrane biology. 2005; 205 (3): 139–145.

152. Bortner C.D. and Cidlowski J.A. Ion channels and apoptosis in cancer // Phil. Trans. R. Soc. B. 2014; 369 (1638): 20130104.

153. Okada Y. et al. Receptor‐mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD) // The Journal of physiology. 2001; 532 (1): 3–16.

154. Okada Y. and Maeno E. Apoptosis, cell volume regulation and volume-regulatory chloride channels // Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2001; 130 (3): 377–383.

155. Edwards Y.S. et al. Osmotic stress induces both secretion and apoptosis in rat alveolar type II cells // American Journal of Physiology-Lung Cellular and Molecular Physiology. 1998; 275 (4): L670–L678.

156. Maeno E. et al. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis // Proceedings of the National Academy of Sciences. 2000; 97 (17): 9487–9492.

157. Terada Y. et al. Hyperosmolality activates Akt and regulates apoptosis in renal tubular cells // Kidney international. 2001; 60 (2): 553–567.

158. Pedersen S.F. et al. The Na+/H+ exchanger, NHE1, differentially regulates mitogen-activated protein kinase subfamilies after osmotic shrinkage in Ehrlich Lettre Ascites cells // Cellular Physiology and Biochemistry. 2007; 20 (6): 735–750.

159. Reinehr R., Schliess F. and Häussinger D. Hyperosmolarity and CD95L trigger CD95/EGF receptor association and tyrosine phosphorylation of CD95 as prerequisites for CD95 membrane trafficking and DISC formation // The FASEB Journal. 2003; 17 (6): 731–733.

160. Friis M.B. et al. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts // The Journal of physiology. 2005; 567 (2): 427–443.

161. Nielsen M.-B., Christensen S.T. and Hoffmann E.K. Effects of osmotic stress on the activity of MAPKs and PDGFR-β-mediated signal transduction in NIH-3T3 fibroblasts // American Journal of Physiology-Cell Physiology. 2008; 294 (4): C1046–C1055.

162. Bortner C.D. and Cidlowski J.A. Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death // Journal of Biological Chemistry. 2003; 278 (40): 39176–39184.

163. Franco R., Bortner C. and Cidlowski J. Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis // The Journal of membrane biology. 2006; 209 (1): 43–58.

164. Orlov S. et al. Apoptosis in serum-deprived vascular smooth muscle cells: evidence for cell volume-independent mechanism // Apoptosis. 2004; 9 (1): 55–66.

165. Bortner C.D. and Cidlowski J.A. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes // American Journal of Physiology-Cell Physiology. 1996; 271 (3): C950– C961.

166. Platonova A. et al. Swelling rather than shrinkage precedes apoptosis in serum-deprived vascular smooth muscle cells // Apoptosis. 2012; 17 (5): 429–438.

167. Platonova A. et al. The death of ouabain-treated renal epithelial C11-MDCK cells is not mediated by swelling-induced plasma membrane rupture // J. Membr Biol. 2011; 241 (3): 145–154.

168. Siegel R., Naishadham D. and Jemal A. Cancer statistics, 2013 // CA: a cancer journal for clinicians. 2013; 63 (1): 11–30.

169. Prevarskaya N., Skryma R. and Shuba Y. Ion channels and the hallmarks of cancer // Trends in molecular medicine. 2010; 16 (3): 107–121.

170. Foroni C. et al. Epithelial–mesenchymal transition and breast cancer: Role, molecular mechanisms and clinical impact // Cancer treatment reviews. 2012; 38 (6): 689–697.

171. Rhim A.D. et al. EMT and dissemination precede pancreatic tumor formation // Cell. 2012; 148 (1): 349– 361.

172. Krishna R. and Mayer L.D. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs // European Journal of Pharmaceutical Sciences. 2000; 11 (4): 265–283.

173. Maeno E., Takahashi N. and Okada Y. Dysfunction of regulatory volume increase is a key component of apoptosis // FEBS letters. 2006; 580 (27): 6513– 6517.

174. Numata T. et al. Hypertonicity-induced cation channels rescue cells from staurosporine-elicited apoptosis // Apoptosis. 2008; 13 (7): 895.

175. Rotin D. and Grinstein S. Impaired cell volume regulation in Na (+)-H+ exchange-deficient mutants // American Journal of Physiology-Cell Physiology. 1989; 257 (6): C1158–C1165.

176. Bonnet S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth // Cancer cell. 2007; 11 (1): 37–51.

177. Hoffmann E.K. and Lambert I.H. Ion channels and transporters in the development of drug resistance in cancer cells // Phil. Trans. R. Soc. B. 2014; 369 (1638): 20130109.

178. Han Y. et al. Detection of potassium currents and regulation of multidrug resistance by potassium channels in human gastric cancer cells // Cell biology international. 2007; 31 (7): 741–747.

179. Morikage T. et al. Modulation of cisplatin sensitivity and accumulation by amphotericin B in cisplatin-resistant human lung cancer cell lines // Cancer research. 1993; (14): 3302–3307.

180. Beketic-Oreskovic L. and Osmak M. Modulation of resistance to cisplatin by amphotericin B and aphidicolin in human larynx carcinoma cells // Cancer chemotherapy and pharmacology. 1995; 35 (4): 327– 333.

181. Min X.-j. et al. Dysfunction of volume-sensitive chloride channels contributes to cisplatin resistance in human lung adenocarcinoma cells // Experimental Biology and Medicine. 2011; 236 (4): 483–491.

182. Lee E.L. et al. Impaired activity of volume‐sensitive Cl− channel is involved in cisplatin resistance of cancer cells // Journal of cellular physiology. 2007; 211 (2): 513–521.

183. Mongin A.A. and Orlov S.N. MECHANISMS OF CELL VOLUME REGULATION // Physiology and Maintenance-Volume I: General Physiology. 2009; 1: 130.


Для цитирования:


Пономарчук О.О., Максимов Г.В., Орлов С.Н. Регуляция объема клеток эпителия в норме и при патологии. Бюллетень сибирской медицины. 2017;16(4):42-60. https://doi.org/10.20538/1682-0363-2017-4-42-60

For citation:


Ponomarchuk O.O., Маximov G.V., Оrlov S.N. The regulation of epithelial cells volume in norm and pathology. Bulletin of Siberian Medicine. 2017;16(4):42-60. (In Russ.) https://doi.org/10.20538/1682-0363-2017-4-42-60

Просмотров: 538


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)