Preview

Бюллетень сибирской медицины

Расширенный поиск

Клеточная Т-регуляторная терапия в трансплантологии: от получения до клинического применения

https://doi.org/10.20538/1682-0363-2018-1-199-210

Полный текст:

Аннотация

Интенсивное изучение клеточных подходов для коррекции различных нарушений, включая иммунологические и онкологические процессы, а также изучение иммуносупрессорной роли регуляторных Т-клеток (Treg-клеток) стали основными предпосылками для разработки методик клеточной коррекции различных иммуноопосредованных состояний, таких как аутоиммунная патология или трансплантация. В связи с малочисленностью Treg-клеток в периферической крови, а также отсутствием строгоспецифичных маркеров изолированное использование методов сортировки цельной крови затрудняет получение достаточного количества клеток, что делает актуальным поиск оптимальных условий генерации и экспансии Treg-клеток с использованием стимуляторов пролиферации и направленной дифференцировки чистой популяции Treg без пролиферации эффекторных клеток. На сегодняшний день в различных экспериментальных и клинических испытаниях показаны многообещающие результаты применения Treg-клеточной иммунотерапии для индукции аллоспецифической толерантности у реципиентов с пересаженными органами и тканями. Ключевые проблемы данной терапии заключаются как в недостаточной изученности механизма действия и специфического фенотипа Treg-клеток, которые в наибольшей степени способствуют индукции толерантности, так и в трудностях получения стабильной популяции функционально-активных Treg-клеток. Кроме того, остается открытым вопрос получения и механизма действия антиген-специфической популяции Treg-клеток. В обзоре проводится анализ имеющихся различных протоколов генерации регуляторных Т-клеток, а также анализ данных о клиническом применении Treg-клеток для индукции аллоспецифической толерантности в условиях трансплантации.

Об авторах

С. В. Сенников
Научно-исследовательский институт фундаментальной и клинической иммунологии (НИИФКИ).
Россия

Сенников Сергей Витальевич, д-р мед. наук, профессор, зав. лабораторией молекулярной иммунологии. 

630099, г. Новосибирск, ул. Ядринцевская, 14.



Ю. Н. Хантакова
Научно-исследовательский институт фундаментальной и клинической иммунологии (НИИФКИ).
Россия

Хантакова Юлия Николаевна, канд. мед. наук, науч. сотрудник, лаборатория молекулярной иммунологии.

630099, г. Новосибирск, ул. Ядринцевская, 14.



Н. Ю. Кнауэр
Научно-исследовательский институт фундаментальной и клинической иммунологии (НИИФКИ).
Россия

Новосибирск. Кнауэр Надежда Юрьевна, лаборант-исследователь, лаборатория клинической иммунопатологии.

630099, г. Новосибирск, ул. Ядринцевская, 14.



Список литературы

1. Katabathina V., Menias C.O., Pickhardt P., Lubner M., Prasad S.R. Complications of Immunosuppressive Therapy in Solid Organ Transplantation. Radiol. Clin. N. Am. 2015; 54. (2): 303–319. DOI: 10.1016/j.rcl.2015.09.009.

2. Sagoo P., Ali N., Garg G., Nestle F.O., Lechler R.I., Lombardi G. Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T-cells. Sci. Transl. Med. 2011; 3 (83): p.83ra42. DOI: 10.1126/scitranslmed.3002076.

3. Hanash A.M., Levy R.B. Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood. 2005; 105 (4): 1828–1836. DOI: 10.1182/blood-2004-08-3213.

4. Dijke I.E., Weimar W., Baan C.C. Regulatory T cells after organ transplantation: where does their action take place? Hum. Immunol. 2008; 69 (7): 389–398. DOI: 10.1016/j.humimm.2008.05.006.

5. Sakaguchi S., Vignali D.A.A., Rudensky A.Y., Niec R.E., Waldmann H. The plasticity and stability of regulatory T cells. Nature Reviews Immunology. 2013; 13: 461–467. DOI: 10.1038/nri3464.

6. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Ann. Rev. Immunol. 2004; 22: 531– 562. DOI: 10.1146/annurev.immunol.21.120601.141122.

7. Abbas A.K. et al. Regulatory T-cells: recommendations to simplify the nomenclature. Nature Immunol. 2013; 14: 307–308. DOI: 10.1038/ni.2554.

8. Zeng M., Guinet E., Nouri-Shirazi M. B7-1 and B7-2 differentially control peripheral homeostasis of CD4(+)CD25(+) Foxp3(+) regulatory T cells. Transplant. Immunology. 2009; 20: 171–179. DOI: 10.1016/j.trim.2008.09.009.

9. Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M., Shimizu J., Sakaguchi S. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. International Immunology. 1998; 10: 969–1980.

10. Golshayan D., Jiang S., Tsang J., Garin M.I., Mottet C., Lechler R.I. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood. 2007; 109: 827–835. DOI: 10.1182/blood-2006-05-025460.

11. Joffre O., Santolaria T., Calise D., Al Saati T., Hudrisi- er D., Romagnoli P., van Meerwijk J.P. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat. Med. 2008; 14: 88–92. DOI: 10.1038/nm1688.

12. Todo S., Yamashita K., Goto R., Zaitsu M., Nagatsu A., Oura T., Watanabe M., Aoyagi T., Suzuki T., Shimamura T. et al. A рilot study of оperational tolerance with a regulatory T cell-based cell therapy in living donor liver transplantation. Hepatology. 2016; 64 (2): 632–643. DOI: 10.1002/hep.28459.

13. Baecher-Allan C., Brown J.A., Freeman G.J. and Hafler D.A. CD4+CD25 high regulatory cells in human peripheral blood. J. Immunol. 2001; 167: 1245–1253. URL: https://doi.org/10.4049/jimmunol.167.3.1245.

14. Hoffmann P., Eder R., Boeld T.J., Doser K., Piseshka B., Andreesen R. et al. Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood. 2006; 108 (13): 4260–4267. DOI: 10.1182/blood-2006-06-027409.

15. Hoffmann P., Boeld T.J., Eder R., Huehn J., Floess S., Wieczorek G. et al. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 2009; 39 (4): 1088– 1097. DOI: 10.1002/eji.200838904.

16. Yang X.O., Nurieva R., Martinez G.J., Kang H.S., Chung Y., Pappu B.P. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008; 29 (1): 44–56. DOI: 10.1016/j.immuni.2008.05.007.

17. Miyao T., Floess S., Setoguchi R., Luche H., Fehling H.J., Waldmann H., Huehn J., Hori S. Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity. 2012; 36 (2): 262–275. DOI: 10.1016/j.immuni.2011.12.012.

18. Gagliani N.I., Magnani C.F., Huber S., Gianolini M.E., Pala M. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 2013; 19 (6): 739–746. DOI: 10.1038/nm.3179.

19. Fujio K., Okamura T. and Yamamoto K. The family of IL-10-secreting CD4+ T cells. Advances in Immunology. 2010; 105: 99–129. DOI: 10.1016/S0065-2776(10)05004-2.

20. Weiner H.L. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol. Rev. 2001; 182: 207–214. DOI: 10.1034/j.1600-065X.2001.1820117.x.

21. Shevach E.M. Mechanisms of foxp3+ T regulatory cell mediated suppression. Immunity. 2009; 30 (5): 636–645. DOI: 10.1016/j.immuni.2009.04.010.

22. Deaglio S., Dwyer K.M., Gao W., Friedman D., Usheva A., Erat A. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007; 204: 1257– 1265. DOI: 10.1084/jem.20062512.

23. Liu W., Putnam A.L., Xu-Yu Z., Szot G.L., Lee M.R., Zhu S. et al. CD127expressionin versely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med. 2006; 203: 1701–1711. DOI: 10.1084/jem.20060772.

24. Hartigan-O’Connor D.J., Poon C., Sinclair E. et al. Human CD4+ regulatory T cells express lower levels of the IL-7 receptor alpha chain (CD127), allowing consistent identification and sorting of live cells. J. Immunol. Methods. 2007; 319: 41–52. DOI: 10.1016/j.jim.2006.10.008.

25. Putnam A.L., Safinia N., Medvec A., Laszkowska M., Wray M., Mintz M.A. et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am. J. Transplant. 2013; 13 (11): 3010–3020. DOI: 10.1111/ajt.12433.

26. Thomson A.W., Turnquist H.R., Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 2009; 9 (5): 324–337. DOI: 10.1038/nri2546.

27. Zeiser R., Leveson-Gower D.B., Zambricki E.A., Kambham N., Beilhack A., Loh J. et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood. 2008; 111 (1): 453–462. DOI: 10.1182/blood-2007-06-094482.

28. Segundo D.S., Ruiz J.C., Izquierdo M., Fernandez-Fresnedo G., Gomez- Alamillo C., Merino R. et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation. 2006; 82 (4): 550–557. DOI: 10.1097/01.tp.0000229473.95202.50.

29. Tresoldi E., Dell’albani I., Stabilini A., Jofra T., Valle A., Gagliani N. et al. Stability of human rapamycin-expanded CD4+CD25+ T regulatory cells. Haematologica. 2011; 96 (9): 1357–1365. DOI: 10.3324/haematol.2011.041483.

30. Rossetti M., Spreafico R., Saidin S., Chua C., Moshref M., Leong J.Y. et al. Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the Foxp3 regulatory T cell-specific demethylated region. J. Immunol. 2015; 194 (1): 113–124. DOI: 10.4049/jimmunol.1401145.

31. Theodosiou M., Laudet V., Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol. Life Sci. 2010; 67 (9): 1423–1445. DOI: 10.1007/s00018-010-0268-z.

32. Lu L., Lan Q., Li Z., Zhou X., Gu J., Li Q. et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc. Nat. Acad. Sci. USA. 2014; 111 (33): 3432–3440. DOI: 10.1073/pnas.1408780111.

33. Lu L., Ma J., Li Z., Lan Q., Chen M., Liu Y. et al. Alltrans retinoic acid promotes TGF-beta-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS One. 2011; 6 (9): e24590. DOI: 10.1371/journal.pone.0024590.

34. Basu R., Whitley S.K., Bhaumik S., Zindl C.L., Schoeb T.R., Benveniste E.N. et al. IL-1 signaling modulates activation of STAT transcription factors to antago-nize retinoic acid signaling and control the TH17 cell-iTreg cell balance. Nat. Immunol. 2015; 16 (3): 286–295. DOI: 10.1038/ni.3099.

35. Smolders J., Thewissen M., Peelen E., Menheere P., Tervaert J.W., Damoiseaux J. et al. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis. PLoS One. 2009; 4 (8): e.6635. DOI: 10.1371/journal.pone.0006635.

36. Urry Z., Chambers E.S., Xystrakis E., Dimeloe S., Richards D.F., Gabrysova L. et al. The role of 1alpha,25-dihydroxyvitamin D3 and cytokines in the pro-motion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur. J. Immunol. 2012; 42 (10): 2697–2708. DOI: 10.1002/eji.201242370.

37. Chambers E.S., Suwannasaen D., Mann E.H., Urry Z., Richards D.F., Lertmemongkolchai G. et al. 1alpha,25-dihydroxyvitamin D3 in combination with transforming growth factor-beta increases the frequency of Foxp3(+) regulatory T cells through preferential expansion and usage of interleukin-2. Immunology. 2014; 143 (1): 52–60. DOI: 10.1111/imm.12289.

38. Trenado A., Charlotte F., Fisson S., Yagello M., Klatzmann D., Salomon B.L. et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J. Clin. Invest. 2003; 112 (11): 1688–1696. DOI: 10.1172/JCI17702.

39. Brusko T.M., Koya R.C., Zhu S., Lee M.R., Putnam A.L., McClymont S.A. et al. Human antigen-specific regulatory T cells generated by T cell receptor gene transfer. PLoS One. 2010; 5 (7): e11726. DOI: 10.1371/journal. pone.0011726.

40. Jethwa H., Adami A.A., Maher J. Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: is now the right time? Clin. Immunol. 2014; 150 (1): 51–63. DOI: 10.1016/j.clim.2013.11.004.

41. Hoffmann P., Ermann J., Edinger M., Fathman C.G., Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 2002;196: 389–399. DOI: 10.1084/jem.20020399.

42. Di Ianni M., Falzetti F., Carotti A., Terenzi A., Castellino F., Bonifacio E. et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011; 117 (14): 3921–3928. DOI: 10.1182/ blood-2010-10-311894.

43. Hillard M. Lazarus. Acute leukemia in adults: novel allogeneic transplant strategies. Hematology. 2012; 17 (1): 47–51. DOI: 10.1179/102453312X13336169155493.

44. Godfrey W.R., Ge Y.G., Spoden D.J., Levine B.L., June C.H. et al. In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood. 2004; 104: 453–461. DOI:10.1182/blood-2004-01-0151.

45. Jessica Heinrichs, David Bastian, Anandharaman Veerapathran, Claudio Anasetti, Brain Betts, and Xue-Zhong Yu Regulatory T-Cell Therapy for Graft-versus-host Disease. J. Immunol. Res. Ther. 2016; 1 (1): 1–14.

46. Jie Yang, Huahua Fan, Jun Hao, Yana Ren, Liang Chen, Guiping Li, Rufeng Xie, Yiming Yang, Kaicheng Qian, and Mingyao Liu. Amelioration of acute graft-versus-host disease by adoptive transfer of ex vivo expanded human cord blood CD4+CD25+ forkhead box protein 3+ regulatory T cells is associated with the polarization of Treg/ Th17 balance in a mouse model. Transfusion. 2012; 52 (6): 1333–1347. DOI: 10.1111/j.1537-2995.2011.03448.x.

47. Brunstein C.G., Miller J.S., Cao Q., McKenna D.H., Hippen K.L., Curtsinger J. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011; 117 (3): 1061–1070. DOI: 10.1182/ blood-2010-07-293795.

48. Beres A., Komorowski R., Mihara M., Drobyski W.R. Instability of Foxp3 expression limits the ability of induced regulatory T cells to mitigate graft versus host disease. Clin. Cancer Res. 2011; 17: 3969–3983. DOI: 10.1158/1078-0432.CCR-10-3347.

49. Zhang P., Tey S.K., Koyama M., Kuns R.D., Olver S.D. et al. Induced regulatory T cells promote tolerance when stabilized by rapamycin and IL-2 in vivo. J. Immunol. 2013; 191: 5291–5303. DOI: 10.4049/jimmunol.1301181.

50. Kenrick Semple, Yu Yu, Dapeng Wang, Claudio Anasetti, and Xue-Zhong Yu. Efficient and selective prevention of GVHD by antigen-specificiInduced Tregs via linked-suppression in mice. Biol. Blood Marrow Transplant. 2011; 17 (3): 309–318. DOI: 10.1016/j.bbmt.2010.12.710.

51. Hippen K.L., Merkel S.C., Schirm D.K., Nelson C., Tennis N.C., Riley J.L., June C.H., Miller J.S., Wagner J.E. and Blazar B.R. Generation and large-scale expansion of human inducible regulatory T cells that suppress graftversus-host disease. Am. J. Transplant. 2011; 11 (6): 1148–1157. DOI: 10.1111/j.1600-6143.2011.03558.x.

52. Aline Gaidot, Dan Avi Landau, Gae lle He´ le`ne Martin, Olivia Bonduelle, Yenkel Grinberg-Bleyer, Diana Matheoud, Sylvie Gregoire, Claude Baillou, Be´hazine Combadiere, Eliane Piaggio et al. Immune reconstitution is preserved in hematopoietic stem cell transplantation coadministered with regulatory T cells for GVHD prevention. Blood. 2011; 117 (10): 2975–2983. DOI: 10.1182/ blood-2010-08-299974.

53. Keli L. Hippen, James L. Riley, Carl H. June, and Bruce R. Blazar Clinical perspectives for regulatory T cells in transplantation tolerance. Semin. Immunol. 2011; 23 (6): 462–468. DOI: 10.1016/j.smim.2011.07.008.

54. Amy J. Beres, William R. Drobyski. The role of regulatoryT cells in the biology of graft versus host disease. Front. Immunol. 2013; 4: 163. DOI: 10.3389/fimmu.2013.00163.

55. Eun-Sol Lee, Jung-Yeon Lim, Keon-Il Im, Nayoun Kim, Young-Sun Nam, Young-Woo Jeon, Seok-Goo Cho. Adoptive transfer of Treg cells combined with mesenchymal stem cells facilitates repopulation of endogenous Treg cells in a murine acute GVHD model. PLoS One. 2015; 10 (9): e0138846. DOI: 10.1371/journal.pone.0138846.

56. Yushi Yao, Lei Wang, Jihao Zhou and Xinyou Zhang Yao et al. HIF-1α inhibitor echinomycin reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. J. Transpl. Med. 2017; 15 (1): 28. DOI: 10.1186/s12967-017-1132-9.

57. Jessica Heinrichs, Jun Li, Hung Nguyen, Yongxia Wu, David Bastian, Anusara Daethanasanmak, M-Hanief Sofi, Steven Schutt, Chen Liu, Junfei Jin et al. CD8 Tregs рromote GVHD рrevention and оvercome the impaired GVL еffect mediated by CD4 Tregs in mice. Oncoimmunology. 2016; 5 (6): e1146842. DOI: 10.1080/2162402X.2016.1146842.

58. Marco Romano, Sim Lai Tung, Lesley Ann Smyth, Giovanna Lombardi. Treg therapy in transplantation: a general overview. Transpl. Int. 2016. DOI: 10.1111/ tri.12909.

59. Theil A., Tuve S., Oelschlägel U. et al. Adoptive transfer of allogeneic regulatory T cells into patients with chronic graft-versus-host disease. Cytotherapy. 2015; 17: 473–486. DOI: 10.1111/cei.12887.

60. Bacchetta R., Lucarelli B., Sartirana C. et al. Immunological outcome in haploidentical-HSC transplanted patients treated with IL-10-anergized donor T cells. Front. Immunol. 2014; 5: 1–14. DOI: 10.3389/fimmu.2014.00016.


Для цитирования:


Сенников С.В., Хантакова Ю.Н., Кнауэр Н.Ю. Клеточная Т-регуляторная терапия в трансплантологии: от получения до клинического применения. Бюллетень сибирской медицины. 2018;17(1):199-210. https://doi.org/10.20538/1682-0363-2018-1-199-210

For citation:


Sennikov S.N., Khantakova J.N., Knauer N.Y. T-regulatory cells in transplantology: from preparation to clinical applications. Bulletin of Siberian Medicine. 2018;17(1):199-210. (In Russ.) https://doi.org/10.20538/1682-0363-2018-1-199-210

Просмотров: 212


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)