Preview

Бюллетень сибирской медицины

Расширенный поиск

Генетические факторы, влияющие на проникновение ВИЧ в клетку-мишень

https://doi.org/10.20538/1682-0363-2019-1-131-141

Полный текст:

Аннотация

Восприимчивость к ВИЧ-инфекции, а также динамика развития заболевания носят индивидуальный характер. Раскрытие генетических основ естественной резистентности к ВИЧ чрезвычайно важно для выработки эффективных стратегий контроля заболевания. Обзор посвящен анализу аллельных вариантов генов хозяина, которые кодируют рецепторы и их лиганды, участвующие в процессе проникновения вируса в клетку-мишень. Эти аллельные варианты и их сочетания способны оказывать значимое влияние на устойчивость либо чувствительность индивидуума к ВИЧ-инфекции, а также могут быть ассоциированы со скоростью прогрессии ВИЧ-инфекции в СПИД.

Об авторах

Р. М. Хаитов
Институт иммунологии
Россия

Хаитов Рахим Мусаевич, доктор медицинских наук, профессор, академик РАН, научный руководитель Института иммунологии

115478, г. Москва, Каширское шоссе, 24



Л. П. Алексеев
Институт иммунологии
Россия

Алексеев Леонид Петрович, доктор медицинских наук, профессор, член-корреспондент РАН, зав. отделом, Институт иммунологии

115478, г. Москва, Каширское шоссе, 24



И. А. Кофиади
Институт иммунологии
Россия

Кофиади Илья Андреевич, доктор биологических наук, заведующий лабораторией

115478, г. Москва, Каширское шоссе, 24



Г. О. Гудима
Институт иммунологии
Россия

Гудима Георгий Олегович, доктор биологических наук, заведующий лабораторией

115478, г. Москва, Каширское шоссе, 24



Список литературы

1. Limou S., Le Clerc S., Coulonges C., Carpentier W., Dina C., Delaneau O., Labib T., Taing L., Sladek R., Deveau C., Ratsimandresy R., Montes M., Spadoni J.L., Lelievre J.D., Levy Y., Therwath A., Schachter F., Matsuda F., Gut I., Froguel P., Delfraissy J.F., Hercberg S., Zagury J.F. Genomewide Association Study of an AIDS-Nonprogression Cohort Emphasizes the Role Played by HLA Genes (ANRS Genomewide Association Study 02). J. Infect. Dis. 2009; 199 (3): 419–426. DOI: 10.1086/596067.

2. Хаитов Р.М. СПИД. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2018: 496.

3. Кофиади И.А., Ребриков Д.В., Трофимов Д.Ю., Алексеев Л.П., Хаитов Р.М. Распределение аллелей генов CCR5, CCR2, и SDF1, ассоциированных с устойчивостью к ВИЧ-инфекции, в российских популяциях. Докл. акад. наук. 2007; 415 (6): 842–845. DOI: 10.1134/s0012496607040217.

4. Кофиади И.А., Хаитов Р.М., Алексеев Л.П., Сидорович И.Г., Карамов Э.В. Генетический полиморфизм человека и устойчивость к ВИЧ/СПИДу. Популяционный аспект. Иммунология. 2009; 30 (4): 196–200.

5. Govorovskaya I., Khromova E., Suslova T., Alexeev L., Kofiadi I. The Frequency of CCR5del32 Mutation in Populations of Russians, Tatars and Bashkirs of Chelyabinsk Region, Russia. Arch. Immunol. Ther. Exp. (Warsz.). 2016; 64 (Suppl. 1): 109–112. DOI: 10.1007/s00005-016-0429-3.

6. Fellay J., Ge D., Shianna K.V., Colombo S., Ledergerber B., Cirulli E.T., Urban T.J., Zhang K., Gumbs C.E., Smith J.P., Castagna A., Cozzi-Lepri A., De Luca A., Easterbrook P., Gьnthard H.F., Mallal S., Mussini C., Dalmau J., Martinez-Picado J., Miro J.M., Obel N., Wolinsky S.M., Martinson J.J., Detels R., Margolick J.B., Jacobson L.P., Descombes P., Antonarakis S.E, Beckmann J.S, O’Brien S.J., Letvin N.L., McMichael A.J., Haynes B.F., Carrington M., Feng S., Telenti A., Goldstein D.B. Common genetic variation and the control of HIV-1 in humans. PLoS Genet. 2009; 5 (12): e1000791. DOI: 10.1371/journal.pgen.1000791.

7. An P., Winkler C.A. Host genes associated with HIV/ AIDS: advances in gene discovery. Trends Genet. 2010; 26 (3): 119–131. DOI: 10.1016/j.tig.2010.01.002.

8. Van Manen D., van Wout A.B., Schuitemaker H. Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics. Retrovirology. 2012; 9: 70. DOI: 10.1186/1742-4690-9-70.

9. Shea P.R., Shianna K.V., Carrington M., Goldstein D.B. Host genetics of HIV acquisition and viral control. Annu Rev Med. 2013; 64: 203–217. DOI: 10.1146/annurev-med-052511-135400.

10. Хаитов Р.М., Алексеев Л.П. Иммуногенетика и биобезопасность. М.: ООО «Миттель-Пресс», 2014: 232. [Khaitov R.M., Alexeev L.P. Immunogenetics and biosafety. Moscow: Mittel-Press Publ., 2014: 232 (in Russ.)].

11. McLaren P.J., Carrington M. The impact of host genetic variation on infection with HIV-1. Nat Immunol. 2015; 16 (6): 577–583. DOI: 10.1038/ni.3147.

12. McLaren P.J., Fellay J. Human genetic variation in HIV disease: beyond genome-wide association studies. Curr Opin HIV AIDS. 2015; 10 (2): 110–115. DOI: 10.1097/COH.0000000000000133.

13. McDermott D.H., Beecroft M.J., Kleeberger C.A., Al-Sharif F.M., Ollier W.E., Zimmerman P.A., Boatin B.A., Leitman S.F., Detels R., Hajeer A.H., Murphy P.M. Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS. 2000; 14 (17): 2671–2678. DOI: 10.1097/00002030-200012010-00006.

14. An P., Nelson G.W., Wang L., Donfield S., Goedert J.J., Phair J., Vlahov D., Buchbinder S., Farrar W.L., Modi W., O’Brien S.J., Winkler C.A. Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl. Acad. Sci. USA. 2002; 99 (15): 10002–10007. DOI: 10.1073/pnas.142313799.

15. Duggal P., Winkler C.A., An P., Yu X.F., Farzadegan H., O’Brien S.J., Beaty T.H., Vlahov D. The effect of RANTES chemokine genetic variants on early HIV-1 plasma RNA among African American injection drug users. J. Acquir. Immune Defic. Syndr. 2005; 38 (5): 584–589. DOI: 10.1097/01.qai.0000134741.49208.03.

16. Sierra S., Kaiser R., Thielen A., Lengauer T. Genotypic coreceptor analysis. Eur. J. Med. Res. 2007; 12 (9): 453–462. DOI: 10.1007/978-3-540-78358-9_4.

17. Zou Y.R., Kottmann A.H., Kuroda M., Taniuchi I., Littman D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998; 393 (6685): 595–599. DOI: 10.1038/31269.

18. Chen M., Svicher V., Artese A., Costa G., Alteri C., Ortuso F., Parrotta L., Liu Y., Liu C., Perno C.F., Alcaro S., Zhang J. Detecting and understanding genetic and structural features in HIV-1 B subtype V3 underlying HIV-1 co-receptor usage. Bioinformatics. 2013; 29 (4): 451–460. DOI: 10.1093/bioinformatics/btt002.

19. O’Brien S.J., Moore J.P. The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to AIDS. Immunol. Rev. 2000; 177: 99–111. DOI: 10.1034/j.1600-065x.2000.17710.x.

20. Arenzana-Seisdedos F., Parmentier M. Genetics of resistance to HIV infection: role of co-receptors and co-receptor ligands. Semin. Immunol. 2006; 18 (6): 387–403. DOI: 10.1016/j.smim.2006.07.007.

21. Waters L., Mandalia S., Randell P., Wildfire A., Gazzard B., Moyle G. The impact of HIV tropism on decreases in CD4 cell count, clinical progression, and subsequent response to a first antiretroviral therapy regimen. Clin. Infect. Dis. 2008; 46 (10): 1617–1623. DOI: 10.1086/587660.

22. Sheppard H.W., Celum C., Michael N.L. et al. HIV- 1 infection in individuals with the CCR5-Delta32 ⁄ Delta32 genotype: acquisition of syncytium-inducing virus at seroconversion. J. Acquir. Immune Defic. Syndr. 2002; 29 (3): 307–313. DOI: 10.1097/00042560-200203010-00013.

23. Woodham A.W., Skeate J.G., Sanna A., Taylor J.R., Da Silva D.M., Cannon P.M., Kast W.M. Human immunodeficiency virus immune cell receptors, coreceptors, and cofactors: implications for prevention and treatment. AIDS Patient Care STDS. 2016; 30 (7): 291–306. DOI: 10.1089/apc.2016.0100.

24. Su B., Sun G., Lu D., Xiao J., Hu F., Chakraborty R., Deka R., Jin L. Distribution of three HIV-1 resistance-conferring polymorphisms (SDF1-3’A, CCR2- 641, and CCR5-delta32) in global populations. Eur. J. Hum. Genet. 2000; 8 (12): 975–979. DOI: 10.1038/sj.ejhg.5200568.

25. Kuhmann S.E., Platt E.J., Kozak S.L., Kabat D. Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. J. Virol. 2000; 74 (15): 7005–7015. DOI: 10.1128/jvi.74.15.7005-7015.2000.

26. Nakayama E.E., Tanaka Y., Nagai Y., Iwamoto A., Shioda T. A CCR2-V64I polymorphism affects stability of CCR2A isoform. AIDS. 2004; 18 (5): 729–738. DOI: 10.1097/00002030-200403260-00003.

27. Lama J., Planelles V. Host factors influencing susceptibility to HIV infection and AIDS progression. Retrovirology. 2007; 4: 52. DOI: 10.1186/1742-4690-4-52.

28. Pereyra F., Addo M.M., Kaufmann D.E. et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J. Infect. Dis. 2008; 197 (4): 563–571. DOI: 10.1086/526786.

29. He W., Neil S., Kulkarni H., Wright E., Agan B.K., Marconi V.C., Dolan M.J., Weiss R.A., Ahuja S.K. Duffy antigen receptor for chemokines mediates trans-infection of hiv-1 from red blood cells to target cells and affects HIV-AIDS Susceptibility. Cell Host Microbe. 2008; 4 (1): 52–62. DOI: 10.1016/j.chom.2008.06.002.

30. Murakami T., Yamamoto N. Roles of chemokines and chemokine receptors in HIV-1 infection. Int. J. Hematol. 2000; 72 (4): 412–417.

31. Fogel G.B., Lamers S.L., Liu E.S., Salemi M., McGrath M.S. Identification of dual-tropic HIV-1 using evolved neural networks. Biosystems. 2015; 137: 12–19. DOI: 10.1016/j.biosystems.2015.09.007.

32. Duncan C.J., Sattentau Q.J. Viral determinants of HIV-1 macrophage tropism. Viruses. 2011; 3 (11): 2255–2279. DOI: 10.3390/v3112255.

33. McGreal E., Miller J., Gordon S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr. Opin. Immunol. 2005; 17 (1): 18–24. DOI: 10.1016/j.coi.2004.12.001.

34. Geijtenbeek T.B., Kwon D.S., Torensma R., van Vliet S.J., van Duijnhoven G.C., Middle J., Cornelissen I.L., Nottet H.S., KewalRamani V.N., Littman D.R., Figdor C.G., van Kooyk Y. DC-SIGN, a dendritic cell-specific HIV- 1-binding protein that enhances trans-infection of T cells. Cell. 2000; 100 (5): 587–597. DOI: 10.1016/s0092-8674(00)80694-7.

35. Van den Berg L.M., Geijtenbeek T.B. Antiviral immune responses by human langerhans cells and dendritic cells in HIV-1 infection. Advances in Experimental Medicine and Biology. 2013; 762: 45–70. DOI: 10.1007/978-1-4614-4433-6_2.

36. Ji X., Gewurz H., Spear G.T. Mannose binding lectin (MBL) and HIV. Mol. Immunol. 2005; 42 (2): 145–152. DOI: 10.1016/j.molimm.2004.06.015.

37. Hadley T.J., Peiper S.C. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood. 1997; 89 (9): 3077–3091. DOI: 0006-4971/97/8909-0030.

38. Fukuma N., Akimitsu N., Hamamoto H., Kusuhara H., Sugiyama Y., Sekimizu K. A role of the Duffy antigen for the maintenance of plasma chemokine concentrations. Biochem. Biophys. Res. Commun. 2003; 303 (1): 137–139. DOI: 10.1016/s0006-291x(03)00293-6.

39. Woolley I.J., Hotmire K.A., Sramkoski R.M., Zimmerman P.A., Kazura J.W. Differential expression of the duffy antigen receptor for chemokines according to RBC age and FY genotype. Transfusion. 2000; 40 (8): 949–953. DOI: 10.1046/j.1537-2995.2000.40080949.x.

40. Chakera A., Seeber R.M., John A.E., Eidne K.A., Greaves D.R. The duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol. Pharmacol. 2008; 73 (5): 1362–1370. DOI: 10.1124/mol.107.040915.

41. Pruenster M., Mudde L., Bombosi P., Dimitrova S., Zsak M., Middleton J., Richmond A., Graham G.J., Segerer S., Nibbs R.J., Rot A. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat. Immunol. 2009; 10 (1): 101–108. DOI: 10.1038/ni.1675.

42. Schnabel R.B., Baumert J., Barbalic M., Dupuis J., Ellinor P.T., Durda P., Dehghan A., Bis J.C., Illig T., Morrison A.C., Jenny N.S., Keaney J.F. Jr., Gieger C., Tilley C., Yamamoto J.F., Khuseyinova N., Heiss G., Doyle M., Blankenberg S., Herder C., Walston J.D., Zhu Y., Vasan R.S., Klopp N., Boerwinkle E., Larson M.G., Psaty B.M., Peters A., Ballantyne C.M., Witteman J.C., Hoogeveen R.C., Benjamin E.J., Koenig W., Tracy R.P. Duffy antigen receptor for chemokines (Darc) polymorphism regulates circulating concentrations of monocyte chemoattractant protein-1 and other inflammatory mediators. Blood. 2010; 115 (26): 5289–5299. DOI: 10.1182/blood-2009-05-221382.

43. Voruganti V.S., Laston S., Haack K., Mehta N.R., Smith C.W., Cole S.A., Butte N.F., Comuzzie A.G. Genome-wide association replicates the association of Duffy antigen receptor for chemokines (DARC) polymorphisms with serum monocyte chemoattractant protein-1 (MCP- 1) levels in Hispanic children. Cytokine. 2012; 60 (3): 634–638. DOI: 10.1016/j.cyto.2012.08.029.

44. Kulkarni H., Marconi V.C., He W., Landrum M.L., Okulicz J.F., Delmar J., Kazandjian D., Castiblanco J., Ahuja S.S., Wright E.J., Weiss R.A., Clark R.A., Dolan M.J., Ahuja S.K. The Duffy-null state is associated with a survival advantage in leukopenic HIV-infected persons of African ancestry. Blood. 2009; 114 (13): 2783–2392. DOI: 10.1182/blood-2009-04-215186.

45. Ramsuran V., Kulkarni H., He W., Mlisana K., Wright E.J., Werner L., Castiblanco J., Dhanda R., Le T., Dolan M.J., Guan W., Weiss R.A., Clark R.A., Karim S.S., Ahuja S.K., Ndung’u T. Duffy-null–associated low neutrophil counts influence HIV-1 susceptibility in high-risk south african black women. Clin. Infect. Dis. 2011; 52 (10): 1248– 1256. DOI: 10.1093/cid/cir119.

46. Zhao J., She S., Xie L., Chen X., Mo C., Huang L., Tang W., Chen X.The Effects of RANTES polymorphisms on susceptibility to hiv-1 infection and disease progression: evidence from an updated meta-analysis. AIDS Res. Hum. Retroviruses. 2016; 32 (6): 517–528. DOI: 10.1089/AID.2015.0312.

47. Gong Z., Tang J., Xiang T., Zhang L., Liao Q., Liu W., Wang Y. Association between regulated upon activation, normal T cells expressed and secreted (RANTES) –28C/G polymorphism and susceptibility to HIV-1 infection: a meta-analysis. PLoS One. 2013; 8 (4): e60683. DOI: 10.1371/journal.pone.0060683.

48. Modi W.S., Lautenberger J., An P., Scott K., Goedert J.J., Kirk G.D., Buchbinder S., Phair J., Donfield S., O’Brien S.J., Winkler C. Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV Type 1 transmission and AIDS disease progression. Am. J. Hum. Genet. 2006; 79 (1): 120–128. DOI: 10.1086/505331.

49. Arenzana-Seisdedos F. SDF-1/CXCL12: A Chemokine in the life cycle of HIV. Front Immunol. 2015; 6: 256. DOI: 10.3389/fimmu.2015.00256.

50. Yu L., Cecil J., Peng S. B., Schrementi J., Kovacevic S., Paul D., Su E. W., Wang J. Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene. 2006; 374: 174–179. DOI: 10.1016/j.gene.2006.02.001.

51. Celerino da Silva R., Victor Campos Coelho A., Cláudio Arraes L., André Cavalcanti Brandão L., Lima Guimarães R., Crovella S. Chemokines SNPs in HIV-1+ Patients and healthy controls from northeast brazil: association with protection against HIV-1 infection. Curr. HIV Res. 2016; 14 (4): 340–345. DOI: 10.2174/1570162X14666160120152237.

52. Aklillu E., Odenthal-Hesse L., Bowdrey J., Habtewold A., Ngaimisi E., Yimer G., Amogne W., Mugusi S., Minzi O., Makonnen E., Janabi M., Mugusi F., Aderaye G., Hardwick R., Fu B., Viskaduraki M., Yang F., Hollox E.J. CCL3L1 copy number, HIV load, and immune reconstitution in sub-Saharan Africans. BMC Infect. Dis. 2013; 13: 536. DOI: 10.1186/1471-2334-13-536.

53. Dolan M.J., Kulkarni H., Camargo J.F., He W., Smith A., Anaya J.M., Miura T., Hecht F.M., Mamtani M., Pereyra F., Marconi V., Mangano A., Sen L., Bologna R., Clark R.A., Anderson S.A., Delmar J., O’Connell R.J., Lloyd A., Martin J., Ahuja S.S., Agan B.K., Walker B.D., Deeks S.G., Ahuja S.K. CCL3L1 and CCR5 influence cell-mediated immunity and affect HIV-AIDS pathogenesis via viral entry-independent mechanisms. Nat. Immunol. 2007; 8 (12) :1324–1336. DOI: 10.1038/ni1521.

54. Bystry R.S., Aluvihare V., Welch K.A., Kallikourdis M., Betz A.G. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol. 2001; 2 (12): 1126–1132. DOI: 10.1038/ni735.

55. Kamin-Lewis R., Abdelwahab S.F., Trang C., Baker A., DeVico A.L., Gallo R.C., Lewis G.K. (July). Perforin-low memory CD8+ cells are the predominant T cells in normal humans that synthesize the β-chemokine macrophage inflammatory protein-1β. Proc. Natl. Acad. Sci. U.S.A. 2001; 98 (16): 9283–9288. DOI: 10.1073/pnas.161298998.

56. Covino D.A., Sabbatucci M., Fantuzzi L. The CCL2/ CCR2 axis in the pathogenesis of HIV-1 infection: a new cellular target for therapy? Curr. Drug Targets. 2016; 17 (1): 76–110. DOI: 10.2174/138945011701151217110917.

57. Sabbatucci M., Covino D.A., Purificato C., Mallano A., Federico M., Lu J., Rinaldi A.O., Pellegrini M., Bona R., Michelini Z., Cara A., Vella S., Gessani S., Andreotti M., Fantuzzi L. Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation. Retrovirology. 2015; 12: 4. DOI: 10.1186/s12977-014-0132-6.

58. Singh K.K., Hughes M.D., Chen J., Spector S.A. Impact of MCP-1-2518-G allele on the HIV-1 disease of children in the United States. AIDS. 2006; 20 (3): 475–478. DOI: 10.1097/01.aids.0000200540.09856.58

59. Mummidi S., Bonello G.B., Ahuja S.K. Confirmation of differential binding of interferon regulatory factor-1 (IRF-1) to the functional and HIV disease-influencing -2578 A/G polymorphism in CCL2. Genes Immun. 2009; 10 (2): 197–198. DOI: 10.1038/gene.2008.75.

60. Moore J.P., Kitchen S.G., Pugach P., Zack J.A. The CCR5 and CXCR4 coreceptors-central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retrovir. 2004; 20 (1): 111–126. DOI: 10.1089/088922204322749567.


Для цитирования:


Хаитов Р.М., Алексеев Л.П., Кофиади И.А., Гудима Г.О. Генетические факторы, влияющие на проникновение ВИЧ в клетку-мишень. Бюллетень сибирской медицины. 2019;18(1):131-141. https://doi.org/10.20538/1682-0363-2019-1-131-141

For citation:


Khaitov R.M., Alexeev L.P., Kofiadi I.A., Gudima G.O. Genetic factors influencing HIV entry into target cells. Bulletin of Siberian Medicine. 2019;18(1):131-141. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-131-141

Просмотров: 106


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)