Preview

Бюллетень сибирской медицины

Расширенный поиск

Противоопухолевая активность флавоноидов

https://doi.org/10.20538/1682-0363-2019-2-181-194

Полный текст:

Аннотация

Обзор литературы посвящен рассмотрению механизмов противоопухолевого действия флавоноидов. Антиканцероматозный эффект флавоноидов обсуждается в контексте их воздействия на основные этапы развития злокачественных опухолевых клеток. При этом подробно рассматривается влияние флавоноидов на активность протеинкиназ, металлопротеиназ, апоптоза, ангиогенеза и клеточного цикла опухолевых клеток.

Об авторе

Я. Ф. Зверев
Алтайский государственный медицинский университет (АГМУ)
Россия
Зверев Яков Федорович, д-р мед. наук, профессор, кафедра фармакологии

656038, г. Барнаул, пр. Ленина, 40


Список литературы

1. Soulinna E.M., Buchsbaum R.N., Racker E. The effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Res. 1975; 35 (7): 1865–1872.

2. Edwards J.M., Raffauf R.F., Le Quesne P.W. Antineoplastic activity and cytotoxicity of flavones, isoflavones and flavanones. J. Nat. Prod. 1979; 42 (1): 85–91. DOI:10.1021/np50001a002.

3. Molnár J., Béládi I., Domonkos K., Földeák S., Boda K., Veckenstedt A. Antitumor activity of flavonoids on NK/Ly ascites tumor cells. Neoplasma. 1981; 28 (1): 11–18.

4. Castillo M.H., Perkins E., Campbell J.H., Doerr R., Hassett J.M., Kandaswami C., Middleton E. The effects of the bioflavonoids quercetin on squamous cell carcinoma of head and neck origin. Am. J. Surg. 1989; 158 (4): 351–355. DOI: 10.1016/0002-9610(89)90132-3.

5. Caltagirone S., Rossi C., Poggi A., Ranelletti F.O., Natali P.G., Brunetti M., Aiello F.B., Piantelli M. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int. J. Cancer. 2000; 87 (4): 595–600. DOI: 10.1002/1097-0215(20000815)87: 4<595::aid-ijc21>3.0.co;2-5.

6. Denison M.S., Pandini A., Nagy S.R., Baldwin E.P., Bonati L. Ligand binding and activation of the Ah receptor. Chem. Biol. Interact. 2002; 141 (1–2): 3–24. DOI: 10.1016/s0009-2797(02)00063-7.

7. Denison M.S., Nagy S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 2003; 43 (1): 309–334. DOI: 10.1146/annurev.pharmtox.43.100901.135828.

8. Murakami A., Ashida H., Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008; 269 (2): 315–325. DOI: 10.1016/j.canlet.2008.03.046.

9. Kandaswami C., Lee L.T., Lee P.P., Hwang J.J., Ke F.C., Huang Y.T., Lee M.T. The antitumor activities of flavonoids. In Vivo. 2005; 19 (5): 895–909.

10. Christensen K.Y., Naidu A., Parent M.E., Pintos J., Abrahamowicz M., Siemiatycki J., Koushik A. The risk of lung cancer related to dietary intake of flavonoids. Nutr. Cancer. 2012; 64 (7): 964–974. DOI: 10.1080/01635581.2012.717677.

11. Zamora-Ros R., Not C., Guinу E., Luján-Barroso L., Garcia R.M., Biondo S., Salazar R., Moreno V. Association between habitual dietary flavonoid and lignin intake and colorectal cancer in a Spanish case-control study (The Bellvitge Colorectal Cancer Study). Cancer Causes Control. 2013; 24 (3): 549–557. DOI: 10.1007/s10552-012-9992-z.

12. Woo H.D., Lee J., Choi I.I., Kim C., Lee J., Kwon O., Kim J. Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients. 2014; 6 (11): 4961–4973. DOI: 10.3390/nu6114961.

13. Tse G., Eslick G.D. Soy and isoflavone consumption and risk of gastrointestinal cancer: A systematic review and meta-analysis. Eur. J. Nutr. 2016; 55 (1): 63–73. DOI: 10.1007/s00394-014-0824-7.

14. Zhou Y., Zheng J., Li Y., Xu D.P., Li S., Chen Y.M., Li H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients. 2016; 8 (8): E515. DOI: 10.3390/nu 8080515.

15. Hui C., Qi X., Qianyong Z., Xiaoli P., Jundong Z., Mantian M. Flavonoids, flavonoid subclasses and breast cancer risk: A meta-analysis of epidemiologic studies. PloS One. 2013; 8 (1): e54318. DOI: 10.1371/journal.pone.0054318.

16. Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn. Rev. 2014; 8 (16): 122–146. DOI: 10.4103/0973-7847.134247.

17. Yin F., Giuliano A.E., Law R.E., Van Herle A.J. Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res. 2001; 21 (1A): 413–420.

18. Johnson I.T., Williamson G., Musk S.R.R. Anticarcinogenic factors in plant foods: A new class of nutrients? Nutr. Res. Rev. 1994; 7 (1): 175–204. DOI: 10.1079/nrr19940011.

19. Amin A.R.M.R., Kucuk O., Khuri F.R., Shin D.M. Perspectives for cancer prevention with natural compounds. J. Clin. Oncol. 2009; 27 (16): 2712–2725. DOI : 10.1200/jco.2008.20.6235.

20. Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human htalth and disease. Oxid. Med. Cell. Long. 2009; 2 (5): 270–278. DOI: 10.4161/oxim.2.5.9498.

21. Pratheeshkumar P., Sreekala C., Zhang Z., Budhraja A., Ding S., Son Y.O., Wang X., Hitron A., Kim H.J., Wang L., Lee J.C., Shi X. Cancer prevention with promising natural products: Mechanisms of action and molecular targets. Anticancer Agents Med. Chem. 2012; 12 (10): 1159–1184. DOI: 10.2174/187152012803833035.

22. Romano B., Pagano E., Montanaro V., Fortunato A.L., Milic N., Borrelli F. Novel insights into the pharmacology of flavonoids. Phytother. Res. 2013; 27 (11): 1588–1596. DOI: 10.1002/ptr. 5023.

23. Kozlowska A., Szostak-Wegierek D. Flavonoids – food sources and health benefits. Rocz. Panstw. Zakl. Hig. 2014; 65 (2): 79–85.

24. Li Q., Ren F.Q., Yang C.L., Zhou L.M., Liu Y.Y., Xiao J., Zhu L., Wang Z.G. Anti-proliferation effects of isorhamnetin on lung cancer cells in vitro and in vivo. Asian Pac. J. Cancer Prev. 2015; 16 (7): 3035–3042. DOI:10.7314/apjcp.2015.16.7.3035.

25. Amararathna M., Johnston M.R., Rupasinghe H.P.V. Plant polyphenols as chemopreventive agents for lung cancer. Int. J. Mol. Sci. 2016; 17 (8): 1352. DOI: 10.3390/ijms 17081352.

26. Middleton E.Jr., Kandaswami C., Theoharidis T.C. The effects of plant flavonoids on mammalian biology: Implications for inflammations, heart disease and cancer. Pharmacol. Rev. 2000; 52 (4): 673–751.

27. Mantena S.K. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis. 2005; 27 (8): 1682–1691. DOI: 10.1093/carcin/bgl030.

28. Chachar M.K., Sharma N., Dobhal M.P., Joshi Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev. 2011; 5 (9): 1–12. DOI: 10.4103/0973-7847.79093.

29. Kilani-Jaziri S., Frachet V., Bhouri W., Ghedira K., Chekir-Ghedira L., Ronot X. Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis. Drug. Chem. Toxicol. 2012; 35 (1): 1–10. DOI: 10.3109/01480545.2011.564180.

30. Majewski G., Lubecka-Pietruszewska K., KaufmanSzymczak A., Fabianowska-Majewska K. Anticarcinogenic capabilities of plant polyphenols: Flavonoids and stilbene. Pol. J. Public Health. 2012; 122 (4): 434–439. DOI: 10.12923/j.0044-2011/122-4/a.19.

31. Li F., Li S., Li H.B., Deng G.F., Ling W.H., Xu X.R. Antiproliferative activities of tea and herbal infusions. Food Funct. 2013; 4 (4): 530–538. DOI: 10.1039/c2fo30252g.

32. Li F., Li S., Li H.B., Deng G.F., Ling W.H., Wu S., Xu X.R., Chen F. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Foods. 2013; 5 (3): 1298–1309. DOI: 10.1016/j.jff.2013.04.016.

33. Li A.N., Li S., Zhang Y.J., Xu X.R., Chen Y.M., Li H.B. Resources and biological activities of natural polyphenols. Nutrients. 2014; 6 (12): 6020–6047. DOI: 10.3390/nu6126020.

34. Scalbert A., Manach C., Morand C., Rémésy C., Jiménez L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005; 45 (4): 287–306. DOI:10.1080/1040869059096.

35. Aoki Y., Hashimoto A.H., Amanuma K., Matsumoto M., Hiyoshi K., Takano H., Masumura K., Itoh K., Nohmi T., Yamamoto M. Enhanced spontaneous and benzo(a) pyrene-induced mutations in the lung of Nrf2-deficient gpt delta mice. Cancer Res. 2007; 67 (12): 5643–5648.DOI: 10.1158/0008-5472.can-06-3355.

36. Krajka-Kuźniak V. Induction of phase II enzymes as a strategy in the chemoprevention of cancer and other degenerative diseases. Postepy Hig. Med. Dosw. 2007; 61: 627–638.

37. Xiao H., Lü F., Stewart D., Zhang Y. Mechanisms underlying chemopreventive effects of flavonoids via multiple signaling nodes within Nrf2-ARE and AhR-XRE gene regulatory networks. Curr. Chem. Biol. 2013; 7 (2):151–176. DOI: 10.2174/2212796811307020008.

38. Zhai X., Lin M., Zhang F., Hu Y., Xu X., Li Y., Liu K., Ma X., Tian X., Yao J. Dietary flavonoid genistein induces Nrf2 and phase II detoxification gene expression via ERKs and PKC pathways and protects against oxidative stress in Caco-2 cells. Mol. Nutr. Food Res. 2013; 57 (2): 249–259. DOI: 10.1002/mnfr.201200536.

39. Khan N., Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 2008; 269 (2): 269–280. DOI: 10.1016/j.canlet.2008.04.014.

40. Talalay P., De Long M.J., Prochaska H.J. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc. Natl. Acad. Sci. USA. 1988; 85 (21): 8261–8265.DOI: 10.1073/pnas.85.21.8261.

41. Graziani Y., Winikoff J., Chayoth R. Regulation of cyclic AMP level and lactic acid production in Ehrlich ascites tumor cells. Biochim. Biophys. Acta. 1977; 497 (2):499–506. DOI: 10.1016/0304-4165(77)90207-0.

42. Jullien M., Villaudy J., Golde A., Harel L. Inhibition by quercetin of the release of density-dependent inhibition of cell growth in RCV-transformed chicken cells. Cell. Biol. Int. Rep. 1984; 8 (11): 939–947. DOI: 10.1016/0309-1651(84)90192-9.

43. Shao J.J., Zhang A.P., Qin W., Zheng L., Zhu Y., Chen X. AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 kung cancer cells. Biochem. Biophys. Res. Commun. 2012; 423 (3): 448–453. DOI: 10.1016/j.bbrc.2012.05.123.

44. Yang Y., Wolfram J., Boom K., Fang X., Shen H., Ferrari M. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell. Biochem. Funct. 2013; 31 (5): 374–379. DOI: 10.1002/cbf.2905.

45. Azevedo C., Correia-Branco A., Araújo J.R., Guimaräes J.T. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell lines is dependent in inhibition of glucose cellular uptake. Nutr. Cancer. 2015; 67 (3): 504–513. DOI:10.1080/01635581.2015.1002625.

46. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein a specific inhibitor of tyrosine kinases. J. Biol. Chem. 1987; 262 (12): 5592–5595.

47. Merlino G.T., Xu Y.H., Ishii S., Clark A., Semba K., Toyoshima K., Yamamoto T., Pastan I. Amplification and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma cells. Science. 1994; 224 (4647): 417–419. DOI: 10.1126/science.6200934.

48. Agullo G., Gamet-Payrastre L., Manenti S., Viala C., Rémésy C., Chap H., Payrastre B. Relationship between flavonoid structure and inhibition of phosphatidyolinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition. Biochem. Pharmacol. 1997; 53 (11): 1649–1657. DOI: 10.1016/s0006-2952(97)82453-7.

49. Kyle E., Neckers L., Takimoto C., Curt G., Bergan R. Genistein-induced apoptosis of prostate cancer cells is preceded by a specific decrease in focal adhesion kinase activity. Mol. Pharmacol. 1997; 51 (2): 193–200. DOI: 10.1124/mol.51.2.193.

50. Yang E.B., Zhang K., Cheng L.Y., Mack P. Butein, a specific protein kinase inhibitor. Biochem. Biophys. Res. Commun. 1998; 245 (2): 435–438. DOI: 10.1006/bbrc.1998.8452.

51. Huang Y.T., Hwang J.J., Lee P.P., Ke F.C., Huang J.H., Huang C.J., Kandaswami C., Middleton E., Lee M.T. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br. J. Pharmacol. 1999; 128 (5): 999–1010. DOI: 10.1038/sj.bjp.0702879.

52. Lee L.T., Huang Y.T., Hwang J.J., Lee P.P., Ke F.C., Nair M.P., Kanadaswam C., Lee M.T. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer Res. 2002; 22 (3): 2103–2114.

53. Lee E.J., Oh S.Y., Sung M.K. Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem. Toxicol. 2012; 50 (11): 4136–4143. DOI: 10.1016/j.fct.2012.08.025.

54. Ruan J., Zhang L., Yan L., Liu Y., Yue Z., Chen L., Wang A.Y., Chen W., Zheng S., Wang S., Lu Y. Inhibition of hypoxia-inductd epithelial mesenchymal transition by luteolin in non-small cell lung cancer cells. Mol. Med. Rep. 2012; 6 (1): 232–238. DOI: 10.3892/mmr.2012.884.

55. Куликова К.В., Кибардин А.В., Гнучев Н.В., Георгиев Г.П., Ларин С.С. Сигнальный путь Wnt и его значение для развития меланомы. Современные технологии в медицине. 2012; 3: 107–112.

56. Татарский В.В. Сигнальный путь Wnt: перспективы фармакологического регулирования. Успехи мол. онкол. 2016; 3 (1): 28–31.

57. Amado N.G., Fonseca B.F., Cerqueira D.M., Neto V.M., Abreu J.G. Flavonoids: potential WNT/beta-catenin signaling modulators in cancer. Life Sci. 2011; 89 (15–16):545–554. DOI: 10.1016/j.lfs.2011.05.003.

58. Martinez N.P., Kanno D.T., Pereira J.A., Cardinalli I.A., Priolli D.G. Beta-catenin and E-cadherin tissue “content” as prognostic markers in left-side colorectal cancer. Cancer Biomark. 2011; 8 (3): 129–135. DOI: 10.3233/dma-2011-0843.

59. Tanaka T., Ashii T., Mizuno D., Mori T., Yamaji R., Nakamura Y., Kumazawa S., Nakayama T., Akagawa M. (-)-Epigallocatechin-3-gallate suppresses growth of AZ521 human gastric cancer cells by targeting the DEAD-box RNA helicase p68. Free Radic. Biol. Med. 2011; 50 (10):1324–1335. DOI: 10.1016/j.freeradbiomed.2011.01.024.

60. Saud S.M., Young M.R., Jones-Hall Y.L., Ileva L., Evbuomwan M.O., Wise J., Colburn N.H., Kim Y.S., Bobe G. Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and beta-catenin. Cancer Res. 2013; 73 (17): 5473–5484. DOI: 10.1158/0008-5472.can-13-0525.

61. Lepri S.R., Zanelatto L.C., Da S.P., Sartori D., Ribeiro L.R., Mantovani M.S. Effects of genistein and daidzein on cell proliferation kinetics in HT29 colon cancer cells: The expression of CTNNBIP1 (beta-catenin) and BIRC5 (survivin). Hum. Cell. 2014; 27 (2): 78–84. DOI: 10.1007/s13577-012-0051-6.

62. Orfali G.C., Duarte A.C., Bonadio V., Martinez N.P., de Araújo M.E.M.B., Priviero F.B.M., Carvalho P.O., Priolli D.G. Review of anticancer mechanisms of isoquercetin. WJCO. 2016; 7 (2): 189–199. DOI: 10.5306/wjco.v7.i2.189.

63. Srinivasan A., Thangavel C., Liu Y., Shoyele S., Den R.B., Selvakumar P., Lakshmikuttyamma A. Quercetin regu lates beta-catenin signaling and reduces the migration of triple negative breast cancer. Mol. Carcinog. 2016; 55 (5): 743–756. DOI: 10.1002/mc.22318.

64. Князькин И.В., Цыган В.Н. Апоптоз в онкоурологии. СПб.: Наука, 2007: 240.

65. Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem. 2007; 18 (7): 427–442. DOI: 10.1016/j.jnutbio.2006.11.004.

66. Pan M.H., Ho C.T. Chemopreventive effects of natural dietary compounds on cancer development. Chem. Soc. Rev. 2008; 37 (11): 2558–2574. DOI: 10.1039/b801558a.

67. Surh Y.J. NF-kappa B and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac. J. Clin. Nutr. 2008; 17 (Suppl. 1): 269–272.

68. Kumi-Diaka J., Sanderson N.A., Hall A. The mediating role of caspase-3 protease in the intracellular mechanism of genistein-induced apoptosis in human prostatic carcinoma cell lines, DU 145 and LNCaP. Biol. Cell. 2000; 92 (8-9): 595–604. DOI: 10.1016/s0248-4900(00)01109-6.

69. Hu M.L. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang Gung Med. J. 2011; 34 (5): 449–460.

70. Kim D.A., Jeon Y.K., Nam M.J. Galangin induces apoptosis in gastric cancer cells via regulation of ubiquitin carboxy-terminal hydrolase isozyme L1 and glutathione S-transferase P. Food Chem. Toxicol. 2012; 50 (3–4): 684–688. DOI: 10.1016/j.fct.2011.11.039.

71. Pan H., Zhou W., He W., Liu K., Ding Q., Ling L., Zha X., Wang S. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-kappaB activity via the Notch-1 pathway. Int. J. Mol. Med. 2012; 30 (2): 337–343. DOI: 10.3892/ijmm.2012.990.

72. Ramachandran L., Manu K.A., Shanmugam M.K., Li F., Siveen K.S., Vali S., Kapoor S., Abbasi T., Surana R., Smoot D.T., Ashktorab H., Tan P., Ahn K.S., Yap C.W., Kumar A.P., Sethi G. Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor gamma activation pathway in gastric cancer. J. Biol. Chem. 2012; 287 (45): 38028–38040. DOI: 10.1074/jbc.m112.388702.

73. Tsui K.H., Chung L.C., Feng T.H., Chang P.L., Juang H.H. Upregulation of prostate-derived Ets factor by luteolin causes inhibition of cell proliferation and cell invasion in prostate carcinoma cells. Int. J. Cancer. 2012; 130 (12) : 2812–2823. DOI: 10.1002/ijc.26284.

74. Wang L.M., Xie K.P., Huo H.N., Shang F., Zou W., Xie M.J. Luteolin inhibits proliferation induced by IGF-1 pathway dependent ERalpha in human breast cancer MCF-7 cells. Asian Pac. J. Cancer Prev. 2012; 13 (4):1431–1437. DOI: 10.7314/apjcp.2012.13.4.1431.

75. Bishayee K., Ghosh S., Mukherjee A., Sadhukhan R., Mondal J., Khuda-Bukhsh A.R. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: Signal cascade and drug-DNA interaction. Cell. Prolif. 2013; 46 (2): 153–163. DOI: 10.1111/cpr.12017.

76. Huang W.W., Tsai S.C., Peng S.F., Lin M.W., Chiang J.H., Chiu Y.J., Fushiya S., Tseng M.T., Yang J.S. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int. J. Oncol. 2013; 42 (6): 2069–2077. DOI:10.3892/ijo.2013.1909.

77. Park H.J., Jeon Y.K., You D.H., Nam M.J. Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells. Food Chem. Toxicol. 2013; 60: 542–549. DOI: 10.1016/j.fct.2013.08.022.

78. Tian T., Li J., Li B., Wang Y., Li M., Ma D., Wang X. Genistein exhibits anti-cancer effects via down-regulating FoxM1 in H446 small-cell lung cancer cells. Tumor Biol. 2014; 35 (5): 4137–4145. DOI: 10.1007/s13277-013-1542-0.

79. Feng J., Chen X., Wang Y., Du Y., Sun Q., Zang W., Zhao G. Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells. Mol. Cell. Biochem. 2015; 408 (1–2): 163–170. DOI: 10.1007/s11010-015-2492-1.

80. Li C., Zhao Y., Yang D., Yu Y., Guo H., Zhao Z., Zhang B., Yin X. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem. Cell. Biol. 2015; 93 (1): 16–27. DOI: 10.1139/bcb-2014-0067.

81. Hayakawa S., Saeki K., Sazuka M., Suzuki Y., Shoji Y., Ohta T., Kaji K., You A., Isemura M. Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochem. Biophys. Res. Commun. 2001; 285 (5): 1102–1106. DOI: 10.1006/bbrc.2001.5293.

82. Hastak K., Gupta S., Ahmad N., Agarwal M.K., Agarwal M.L., Mukhtar H. Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene. 2003; 22 (31): 4851–4859. DOI: 10.1038/sj.onc.1206708.

83. Kawai K., Tsuno N.H., Kitayama J., Okaji Y., Yazawa K., Asakage M., Sasaki S., Watanabe T., Takahashi K., Nagawa H. Epigallocatechin gallate induces apoptosis of monocytes. J. Allergy Clin. Immunol. 2005; 115 (1):186–191. DOI: 10.1016/j.jaci.2004.10.005.

84. Nishikawa T., Nakajima T., Moriguchi M., Jo M., Sekoguchi S., Ishii M., Takashima H., Katagishi T., Kimura H., Minami M., Itoh Y., Kagawa K., Okanoue T. A green tea polyphenol, epigallocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J. Hepatol. 2006; 44 (6): 1074–1082. DOI: 10.1016/j.jhep.2005.11.045.

85. Lim Y.C., Cha Y.Y. Epigallocatechin 3 gallate induces growth inhibition and apoptosis of human anaplastic thyroid carcinoma cells through suppression of EGFR/ERK pathway and cyclin B1/CDK1 complex. J. Surg. Oncol. 2011; 104 (7): 776–780. DOI: 10.1002/jso.21999.

86. Onoda C., Kuribayashi K., Nirasawa S., Tsuji N., Tanaka M., Kobayashi D., Watanabe N. Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression. Int. J. Oncol. 2011; 38, (5): 1403–1408. DOI: 10.3892/ijo.2011.951.

87. Shimizu M., Adachi S., Masuda M., Kozawa O., Moriwaki H. Cancer chemoprevention with green tea catechins by targeting receptor tyrosine kinases. Mol. Nutr. Food Res. 2011; 55 (6): 832–843. DOI: 10.1002/mnfr.201000622.

88. Hirano T., Abe K., Gotoh M., Oka K. Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes. Br. J. Cancer. 1995; 72 (6): 1380–1388. DOI: 10.1038/bjc.1995.518.

89. Arul D., Subramanian P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol. Oncol. Res. 2013; 19 (4): 763–770. DOI: 10.1007/s12253-013-9641-1.

90. Sambantham S., Radha M., Paramasivam A., Anandan B., Malathi R., Chandra S.R., Jayaraman G. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac. J. Cancer Prev. 2013; 14 (7): 4347–4352. DOI:10.7314/apjcp.2013.14.7.4347.

91. Palit S., Kar S., Sharma G., Das P.K. Hesperetin induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J. Cell. Physiol. 2015; 230 (8): 1729–1739. DOI: 10.1002/jcp.24818.

92. Choi E.J., Kim G.H. Apigenin induces apoptosis through a mitochondria/caspase-pathway in human breast cancer MDA-MB-453 cells. J. Clin. Biochem. Nutr. 2009; 44 (3):260–265. DOI: 10.3164/jcbn.08-230.

93. Cai J., Zhao X.L., Liu A.W., Nian H., Zhang S.H. Apigenin inhibits hepatoma cell growth through alteration of gene expression patterns. Phytomedicine. 2011; 18 (5): 366–373. DOI: 10.1016/j.phymed.2010.08.006.

94. Lu H.F., Chie Y.J., Yang M.S., Lu K.W., Fu J.J., Yang J.S., Chen H.Y., Hsia T.C., Ma C.Y., Ip S.W., Chung J.G. Apigenin induces apoptosis in human lung cancer H460 cells through caspase- and mitochondria-dependent pathways. Hum. Exp. Toxicol. 2011; 30 (8): 1053–1061.DOI: 10.1177/0960327110386258.

95. Alshatwi A.A., Ramesh E., Periasamy V.S., Subash-Babu P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam. Clin. Pharmacol. 2013; 27 (6): 581–592. DOI: 10.1111/j.1472-8206.2012.01061.x.

96. Kim M.E., Ha T.K., Yoon J.H., Lee J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res. 2014; 34 (2):701–706.

97. Lee H.S., Cho H.J., Yu R., Chun H., Park J. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells. Int. J. Mol. Sci. 2014; 15 (2): 2722–2737. DOI: 10.3390/ijms15022722.

98. Dai W., Gao Q., Qiu J., Yuan J., Wu G., Shen G. Quercetin induces apoptosis and enhances 5-FU therapeutic efficacy in hepatocellular carcinoma. Tumor Biol. 2015; 37 (5): 6307–6313. DOI: 10.1007/s13277-015-4501-0.

99. Iyer S.C., Gopal A., Halagowder D. Myricetin induces apoptosis by inhibiting P21 activated kinase 1 (PAK11) signaling cascade in hepatocellular carcinoma. Mol. Cell. Biochem. 2015; 407 (1–2): 223–237. DOI: 10.1007/s11010-015-2471-6.

100. Jo S., Ha T.K., Han S.H., Kim M.E., Jung I., Lee H.W., Bae S.K., Lee J.S. Myricetin induces apoptosis of human anaplastic thyroid cancer cells via mitochondria dysfunction. Anticancer Res. 2017; 37 (4): 1705–1710. DOI:10.21873/anticanres.11502.

101. Герштейн Е.С., Щербаков А.М., Ошкина Н.Е., Кушлинский Н.Е., Огнерубов Н.А. Ключевые компоненты NF-κB-сигнального пути в опухолях больных раком молочной железы. Вестник Тамбовского университета. 2013; 18 (6–2): 3292–3297.

102. Bin H.B., Asim M., Siddiqui I.A., Adhami V.M., Murtaza I., Mukhtar H. Delphinidin, a dietary anthocyanidin in pigmented fruits and vegetables: A new weapon to blunt prostate cancer growth. Cell. Cycle. 2008; 7 (21):3320–3326. DOI: 10.4161/cc.7.21.6969.

103. Yun J.M., Afaq F., Khan N., Mukhtar H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog. 2009; 48 (3): 260–270. DOI: 10.1002/mc.20477.

104. Cai X., Ye T., Liu C., Lu W., Lu M., Zhang J., Wang M., Cao P. Luteolin induces G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol. Vitro. 2011; 25 (7): 1385–1391. DOI: 10.1016/j.tiv.2011.05.009.

105. Yen H.R., Liu C.V.J., Yeh C.C. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem. Biol. Interact. 2015; 235: 1–9. DOI: 10.1016/j.cbi.2015.04.003.

106. Bracke M.E., Castronovo V., Van Cauwenberge R.M., Coopman P., Vakaet L., Strojny P., Foidart J.M., Mareel M.M. The antiinvasive flavonoid (+)-catechin binds to laminin and abrogates the effect of laminin on cell morphology and adhesion. Exp. Cell. Res. 1987; 173 (1):193–205. DOI: 10.1016/0014-4827(87)90345-4.

107. Кондакова И.В., Клишо Е.В., Савенкова О.В., Шишкин Д.А., Чойнзонов Е.Л. Патогенетическая значи-мость системы матриксных металлопротеиназ при плоскоклеточном раке головы и шеи. Сибирский онкол. журнал. 2011; 1: 29–33.

108. Ярмолинская М.И., Молотков А.С., Денисова В.М. Матриксные металлопротеиназы и ингибиторы: классификация, механизм действия. Журнал акуш. и жен. бол. 2012; 61 (1): 113–125.

109. Kim M.H. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J. Cell. Biochem. 2003; 89 (3): 529–538. DOI:10.1002/jcb.10543.

110. Moon S.K., Cho G.O., Jung S.Y., Gal S.W., Kwon T.K., Lee Y.C., Madamanchi N.R., Kim C.H. Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: Role of ERK1/2, cell-cycle regulation, and matrix metalloproteinase-9. Biochem. Biophys. Res. Commun. 2003; 301 (4): 1069–1078. DOI: 10.1016/s0006-291x(03)00091-3.

111. Zhang X.M., Huang S.P., Xu Q. Quercetin inhibits the invasion of murine melanoma B16-BL6 cells by decreasing pro-MMP-9 via the PKC pathway. Cancer Chemother. Pharmacol. 2004; 53 (1): 82–88. DOI: 10.1007/bf02665357.

112. Shao Z.M., Wu J., Shen Z.Z. Barsky S.H. Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. Anticancer Res. 1998; 18 (3A): 1435–1439.

113. Magee P.J., McGlynn H., Rowland I.R. Differential effects of isoflavones and lignans on invasiveness of MDAMB-231 breast cancer cells in vivo. Cancer Lett. 2004; 208 (1): 35–41. DOI: 10.1016/j.canlet.2003.11.012.

114. Ende C., Gebhardt R. Inhibition of matrix metalloproteinase-2 and -9 activities by selected flavonoids. Planta Med. 2004; 70 (10): 1006–1008. DOI: 10.1055/s-2004-832630.

115. Demeule M., Brossard M., Pagé M., Gingras D., Béliveau R. Matrix metalloproteinase inhibition by green tea catechins. Biochim. Biophys. Acta. 2000; 1478 (1): 51–60. DOI: 10.1016/s0167-4838(00)00009-1.

116. Garbisa S., Sartor L., Biggin S., Salvato B., Benelli R., Albini A. Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer. 2001; 91 (4): 822–832. DOI: 10.1002/1097-0142(20010215)91 :4<822 ::aid-cncr1070>3.0.co ;2-g.

117. Tate P., God J., Bibb R., Lu Q., Larcom L.L. Inhibition of metalloproteinase activity by fruit extracts. Cancer Lett. 2004; 212 (2): 153–158. DOI: 10.1016/j.canlet.2004.03.025.

118. Scholar E.M., Toews M.L. Inhibition of invasion of murine mammary carcinoma cells by the tyrosine kinase inhibitor genistein. Cancer Lett. 1994; 87 (2): 159–162. DOI: 10.1016/0304-3835(94)90217-8.

119. Sounni N.E., Paye A., Host L., Noȅl A. MT-MMPS as regulators of vessel stability associated with angiogenesis. Front. Pharmacol. 2011. 2-article 111. DOI: 10.3389/fphar. 2011.00111.eCollection 2011.

120. Basagiannis D., Zografou S., Murphy C., Fotsis T., Morbidelli L., Ziche M., Bleck C., Mercer J., Christoforidis S. VEFG induces signalling and angiogenesis by directing VEGFR2 internalisation through micropinocytosis. J. Cell. Sci. 2016; 129 (21): 4091–4104. DOI: 10.1242/jcs.188219.

121. Singh A.K., Seth P., Anthony P., Husain M.M., Madhavan S., Mukhtar H., Maheshwari R.K. Green tea constituent epigallocatechin-3-gallate inhibits angiogenic differentiation of human endothelial cells. Arch. Biochem. Biophys. 2002; 401 (1): 29–37. DOI: 10.1016/s0003-9861(02)00013-9.

122. Osada M., Imaoka S., Funae Y. Apigenin suppress the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1 [alpha] protein. FEBS Lett. 2004; 575 (1–3): 59–63. DOI:10.1016/febslet.2004.08.036.

123. Shukla S., Bhaskaran N., Babcook M.A., Fu P., MacLennan G.T., Gupta S. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis. 2014; 35 (2): 452–460. DOI: 10.1093/carcin/bgt316.

124. Walsh L.J., Trinchieri G., Waldorf H.A., Whitaker D., Murphy G.F. Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc. Natl. Acad. Sci. USA. 1991; 88 (10): 4220–4224. DOI:10.1073/pnas.88.10.4220.

125. Middleton E.Jr., Anné S. Quercetin inhibits of lipopolysaccharide-induced expression of endothelial intercellular adhesion molecule-1. Int. Arch. Allergy Immunol. 1995; 107 (1–3): 435–436. DOI: 10.1159/000237071.

126. Zhao X., Wang Q., Yang S., Chen C., Li X., Liu J., Zou Z., Cai D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol. 2016; 781: 60–68. DOI:10.1016/j.ejphar.2016.03.063.

127. Fotsis T., Pepper M.S., Aktas E., Breit S., Rasku S., Adlercreutz H., Wähälä K., Montesano R., Schweigerer L. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 1997; 57 (14): 2916–2921.

128. Kruse F.E., Jossen A.M., Fotsis T., Schweigerer L., Rohrschneider K., Völcker H.E. Inhibition of neovasularization of the eye by dietary factors exemplified by isoflavonoids. Ophthalmologe. 1997; 94 (2): 152–156.DOI: 10.1007/s003470050097.

129. Bellou S., Karali E., Bagli E., Al-Maharik N., Morbidelli L., Ziche M., Adlercreutz H., Murphy C., Fotsis T.The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth. Mol. Cancer. 2012; 11 (1): 35. DOI: 10.1186/1476-4598-11-35.

130. Bagli E., Stefaniotou M., Morbidelli L., Ziche M., Psillas K., Murphy C., Fotsis T. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis: Inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3’-kinase activity. Cancer Res. 2004; 64 (21): 7936–7946. DOI: 10.1158/0008-5472.can-03-3104.

131. Wu X.Y., Xu H., Wu Z.F., Chen C., Liu J.Y., Wu G.N., Yao X.Q., Liu F.K., Li G., Shen L. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models. Oncotarget. 2015; 6 (42): 44563–44578. DOI: 10.18632/oncotarget.6310.

132. Malumbers M., Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer. 2009; 9 (3): 153–166. DOI: 10.1038/nrc2602.

133. Araújo J.R., Gonзalves P., Martel F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr. Res. 2011; 31 (2): 77–87. DOI: 10.1016/j.nutres.2011.01.006.

134. Jun D.Y., Park H.S., Kim J.S., Kim J.S., Park W., Song B.H., Kim H.S., Taub D., Kim Y.H. 17[alpha]-Estradiol arrests cell cycle progression at G2/M and induces apoptotic cell death in human acute leukemia Jurkat T cells. Toxicol. Appl. Pharmacol. 2008; 231 (3): 401–412. DOI: 10.1016/j.taap.2008.05.023.

135. Zhang Q., Zhao X.H., Wang Z.J. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol. in Vitro. 2009; 23 (5): 797–807. DOI: 10.1016/j.tiv.2009.04.007.

136. Srivastava S., Somasagara R.R., Hedge M., Nishana M., Tadi S.K., Srivastava M., Choudhary B., Raghavan S.C. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep. 2016; 6: 24049. DOI: 10.1038/srep 24049.

137. Cho H.J., Park J. H.Y. Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells. J. Cancer Prev. 2013; 18 (3): 257–263. DOI: 10.15430/jcp.2013.18.3.257.

138. Kim K.Y., Jang W.Y., Lee J.Y., Jun D.Y., Ko J.Y., Yun Y.H., Kim Y.H. Kaempferol activates G2-checkpoint of the cell cycle resulting in G2-arrest and mitochondria-dependent apoptosis in human acute leukemia Jurkat T cells. J. Microbiol. Biotechnol. 2016; 26 (2): 287–294. DOI: 10.4014/jmb.1511.11054.

139. Ruela-de-Sousa R., Fuhler G., Blom N., Ferreira C.V., Aoyama H., Peppelenbosch M.P. Cytotoxicity of apigenin on leukemia cell lines: Implifications for prevention and therapy. Cell. Death Dis. 2010; 1 (1): e19. DOI: 10.1038/cddis.2009.18.

140. Yu C., Zeng J., Yan Z., Ma Z., Liu S., Huang Z. Baicalein antagonizes acute megakaryoblastic leukemia in vitro and in vivo by inducing cell cycle arrest. Cell Biosci. 2016; 6: 20. DOI: 10.1186/s13578-016-0084-8.

141. Wang Y., Yu H., Zhang J., Gao J., Ge X., Lou G. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest. BMC Cancer. 2015; 15: 682. DOI:10.1186/s12885-015-1706-y.

142. Han B.J., Li W., Jiang G.B., Lai S.H., Zhang C., Zeng C.C., Liu Y.J. Effects of daidzein in regards to cytotoxicity in vitro, apoptosis, reactive oxygen species level, cell cycle arrest and the expression of caspase and Bcl-2 family proteins. Oncol. Rep. 2015; 34 (3): 1115–1120.DOI: 10.3892/or.2015.4133.

143. Yang Y., Zhao Y., Ai X., Cheng B., Lu S. Formononetin suppresses the proliferation of human non-small cell lung cancer through induction of cell arrest and apoptosis. Int. J. Clin. Exp. Pathol. 2014; 7 (12): 8453–8461.

144. Li T., Zhao X., Mo Z., Huang W., Yan H., Ling Z., Ye Y. Formononetin promotes cell cycle arrest via downregulation of Akt/cyclin D1/CDK4 in human prostate cancer cells. Cell. Physiol. Biochem. 2014; 34 (4): 1351–1358. DOI: 10.1159/000366342.


Для цитирования:


Зверев Я.Ф. Противоопухолевая активность флавоноидов. Бюллетень сибирской медицины. 2019;18(2):181-194. https://doi.org/10.20538/1682-0363-2019-2-181-194

For citation:


Zverev Y.F. Antitumor activity of flavonoids. Bulletin of Siberian Medicine. 2019;18(2):181-194. (In Russ.) https://doi.org/10.20538/1682-0363-2019-2-181-194

Просмотров: 17


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)