Preview

Бюллетень сибирской медицины

Расширенный поиск

Аутофагия как механизм защиты при окислительном стрессе

https://doi.org/10.20538/1682-0363-2019-2-195-214

Полный текст:

Аннотация

Аутофагия является основным катаболическим процессом удаления из клеток поврежденных органелл, агрегированных белков и внутриклеточных патогенов. Развитие окислительного стресса сопровождается усилением аутофагии, которая оказывает защитное действие посредством поддержания качественного состава митохондрий (митофагия) и пероксисом (пексофагия) с последующей лизосомальной деградацией органелл с высокой продукцией активных форм кислорода. Посредством агрефагии также удаляются токсические продукты, образующиеся при окислительном и карбонильном стрессе. Кроме того, аутофагия может активировать систему антиоксидант-респонсивного элемента и повышать экспрессию генов антиоксидантных ферментов. Защитная роль аутофагии может быть полезной при многих патологиях, сопровождающихся развитием окислительного стресса, и в то же время служить причиной химиорезистентности и снижать эффективность противоопухолевой терапии.

Об авторах

Н. К. Зенков
Федеральный исследовательский центр фундаментальной и трансляционной медицины (ФИЦ ФТМ)
Россия
Зенков Николай Константинович, д-р биол. наук, вед. науч. сотрудник, лаборатория молекулярных механизмов свободно-радикальных процессов

630117, г. Новосибирск, ул. Тимакова, 2


А. В. Чечушков
Федеральный исследовательский центр фундаментальной и трансляционной медицины (ФИЦ ФТМ)
Россия
Чечушков Антон Владимирович, канд. мед. наук, науч. сотрудник, лаборатория молекулярных механизмов свободнорадикальных процессов

630117, г. Новосибирск, ул. Тимакова, 2


П. М. Кожин
Федеральный исследовательский центр фундаментальной и трансляционной медицины (ФИЦ ФТМ)
Россия
Кожин Пётр Михайлович, канд. мед. наук, науч. сотрудник, лаборатория молекулярных механизмов свободно-радикальных процессов

630117, г. Новосибирск, ул. Тимакова, 2


Г. Г. Мартинович
Белорусский государственный университет (БГУ)
Беларусь
Мартинович Григорий Григорьевич, д-р биол. наук, зав. кафедрой биофизики

220030, г. Минск, пр. Независимости, 4


Н. В. Кандалинцева
Новосибирский государственный педагогический университет (НГПУ)
Россия
Кандалинцева Наталья Валерьевна, канд. хим. наук, директор Института естественных и социально-экономических наук

630126, г. Новосибирск, ул. Вилюйская, 28


Е. Б. Меньщикова
Федеральный исследовательский центр фундаментальной и трансляционной медицины (ФИЦ ФТМ)
Россия
Меньщикова Елена Брониславовна, д-р мед. наук, зав. лабораторией молекулярных механизмов свободно-радикальных процессов

630117, г. Новосибирск, ул. Тимакова, 2


Список литературы

1. Меньщикова Е.Б., Çенков Н.К., Ланкин В.Ç., Бондарь И.А., Труфакин В.А. Окислительный стресс. Патологические состояния и заболевания. Новосибирск: АРТА, 2008: 284.

2. Lionaki E., Markaki M., Palikaras K., Tavernarakis N. Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay. Biochim. Biophys. Acta. 2015; 1847 (11): 1412–1423. DOI: 10.1016/j.bbabio.2015.04.010.

3. Меньщикова Е.Б., Ланкин В.Ç., Кандалинцева Н.В. Фенольные антиоксиданты в биологии и медицине. Saarbrücken: LAP LAMBERT Acad. Publishing, 2012: 496.

4. Filomeni G., De Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015; 22 (3): 377–388. DOI: 10.1038/cdd.2014.150.

5. Galadari S., Rahman A., Pallichankandy S., Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017; 104: 144–164. DOI: 10.1016/j.freeradbiomed.2017.01.004.

6. Hewitt G., Korolchuk V.I. Repair, reuse, recycle: The expanding role of autophagy in genome maintenance. Trends Cell Biol. 2017; 27 (5): 340–351. DOI: 10.1016/j.tcb.2016.11.011.

7. Zhang J., Kim J., Alexander A., Cai S., Tripathi D.N., Dere R., Tee A.R., Tait-Mulder J., Di Nardo A., Han J.M., Kwiatkowski E., Dunlop E.A., Dodd K.M., Folkerth R.D., Faust P.L., Kastan M.B., Sahin M., Walker C.L. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat. Cell Biol. 2013; 15 (10): 1186–1196. DOI: 10.1038/ncb2822.

8. Tan S., Wong E. Kinetics of protein aggregates disposal by aggrephagy. Methods Enzymol. 2017; 588: 245–281. DOI: 10.1016/bs.mie.2016.09.084.

9. Wallace K.B. Mitochondrial toxicity. Toxicology. 2017; 391: 1. DOI: 10.1016/j.tox.2017.08.005.

10. Matsuzawa-Ishimoto Y., Hwang S., Cadwell K. Autophagy and inflammation. Annu. Rev. Immunol. 2018; 36: 73–101. DOI: 10.1146/annurev-immunol-042617-053253.

11. Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., Abete P. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018; 13: 757–772. DOI: 10.2147/CIA.S158513.

12. Anding A.L., Baehrecke E.H. Cleaning house: Selective autophagy of organelles. Dev. Cell. 2017; 41 (1): 10–22. DOI: 10.1016/j.devcel.2017.02.016.

13. Khaminets A., Behl C., Dikic I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 2016; 26 (1): 6–16. DOI: 10.1016/j.tcb.2015.08.010.

14. Morel E., Mehrpour M., Botti J., Dupont N., Hamai A., Nascimbeni A.C., Codogno P. Autophagy: A druggable process. Annu. Rev. Pharmacol. Toxicol. 2017; 57: 375–398. DOI: 10.1146/annurev-pharmtox-010716-104936.

15. Svenning S., Johansen T. Selective autophagy. Essays Biochem. 2013; 55: 79–92. DOI: 10.1042/bse0550079.

16. Navarro-Yepes J., Burns M., Anandhan A., Khalimonchuk O., del Razo L.M., Quintanilla-Vega B., Pappa A., Panayiotidis M.I., Franco R. Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid. Redox Signal. 2014; 21 (1): 66–85. DOI: 10.1089/ars.2014.5837.

17. Scherz-Shouval R., Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 2011; 36 (1): 30–38. DOI: 10.1016/j.tibs.2010.07.007.

18. Пупышев А.Б. Репаративная аутофагия и аутофаговая гибель клетки. Функциональные и регуляторные аспекты. Цитология. 2014; 56 (3): 179–196.

19. Lin M.G., Hurley J.H. Structure and function of the ULK1 complex in autophagy. Curr. Opin. Cell Biol. 2016; 39: 61–68. DOI: 10.1016/j.ceb.2016.02.010.

20. Kim B.W., Kwon D.H., Song H.K. Structure biology of selective autophagy receptors. BMB Rep. 2016; 49 (2): 73–80. DOI: 10.5483/BMBRep.2016.49.2.265.

21. Xu Z., Yang L., Xu S., Zhang Z., Cao Y. The receptor proteins: pivotal roles in selective autophagy. Acta Biochim. Biophys. Sin. 2015; 47 (8): 571–580. DOI: 10.1093/abbs/gmv055.

22. Schaaf M.B., Keulers T.G., Vooijs M.A., Rouschop K.M. LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J. 2016; 30 (12): 3961–3978. DOI: 10.1096/fj.201600698R.

23. Hamacher-Brady A., Brady N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci. 2016; 73 (4): 775–795. DOI: 10.1007/s00018-015-2087-8.

24. Mancias J.D., Kimmelman A.C. Mechanisms of selective autophagy in normal physiology and cancer. J. Mol. Biol. 2016; 428 (9 Pt A): 1659–1680. DOI: 10.1016/j.jmb.2016.02.027.

25. Kornfeld O.S., Hwang S., Disatnik M.H., Chen C.H., Qvit N., Mochly-Rosen D. Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ. Res. 2015; 116 (11): 1783–1799. DOI: 10.1161/CIRCRESAHA.116.305432.

26. Gao J., Wang L., Liu J., Xie F., Su B., Wang X. Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants (Basel). 2017; 6 (2): 25. DOI:10.3390/antiox6020025.

27. Андреев А.Ю., Кушнарева Ю.Е., Старков А.А. Метаболизм активных форм кислорода в митохондриях. Биохимия. 2005; 70 (2): 246–264.

28. Гривенникова В.Г., Виноградов А.Д. Генерация активных форм кислорода митохондриями. Успехи биологической химии. 2013; 53: 245–296.

29. Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016; 2016: 1245049. DOI: 10.1155/2016/1245049.

30. Scialo F., Fernandez-Ayala D.J., Sanz A. Role of mitochondrial reverse electron transport in ROS signaling: Potential roles in health and disease. Front. Physiol. 2017; 8: 428. DOI: 10.3389/fphys.2017.00428.

31. Мартинович Г.Г., Черенкевич С.Н. Окислительно-восстановительные процессы в клетках. Минск: БГУ, 2008: 159.

32. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 2018; 117: 76–89. DOI: 10.1016/j.freeradbiomed.2018.01.024.

33. Wohlgemuth S.E., Calvani R., Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J. Mol. Cell. Cardiol. 2014; 71: 62–70. DOI: 10.1016/j.yjmcc.2014.03.007.

34. Yakes F.M., Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA. 1997; 94 (2): 514–519.

35. Kaludercic N., Giorgio V. The Dual Function of Reactive Oxygen/Nitrogen Species in Bioenergetics and Cell Death: The Role of ATP Synthase. Oxid. Med. Cell. Longev. 2016; 2016: 3869610. DOI: 10.1155/2016/3869610.

36. Barodia S.K., Creed R.B., Goldberg M.S. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res. Bull. 2017; 133: 51–59. DOI: 10.1016/j.brainresbull.2016.12.004.

37. Rub C., Wilkening A., Voos W. Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res. 2017; 367 (1): 111–123. DOI: 10.1007/s00441-016-2485-8.

38. Yamano K., Matsuda N., Tanaka K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 2016; 17 (3): 300–316. DOI: 10.15252/embr.201541486.

39. Yoo S.M., Jung Y.K. A molecular approach to mitophagy and mitochondrial dynamics. Mol. Cells. 2018; 41 (1):18–26. DOI: 10.14348/molcells.2018.2277.

40. Islam M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 2017; 39 (1): 73–82. DOI: 10.1080/01616412.2016.1251711.

41. Matic I., Strobbe D., Di Guglielmo F., Campanella M. Molecular biology digest of cell mitophagy. Int. Rev. Cell Mol. Biol. 2017; 332: 233–258. DOI: 10.1016/bs.ircmb.2016.12.003.

42. Kim I., Rodriguez-Enriquez S., Lemasters J.J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 2007; 462 (2): 245–253. DOI: 10.1016/j.abb.2007.03.034.

43. Verstrepen L., Verhelst K., Carpentier I., Beyaert R. TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends Biochem. Sci. 2011; 36 (7): 347–354. DOI: 10.1016/j.tibs.2011.03.004.

44. Brennan L., Khoury J., Kantorow M. Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stressь exposure. Biochim. Biophys. Acta. 2017; 1863 (1): 21–32. DOI: 10.1016/j.bbadis.2016.09.020.

45. Bravo-San Pedro J.M., Kroemer G., Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ. Res. 2017; 120 (11): 1812–1824. DOI: 10.1161/CIRCRESAHA.117.311082.

46. Wang X., Cui T. Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2017; 313 (2): H304–H319. DOI: 10.1152/ajpheart.00145.2017.

47. Lee Y., Kwon I., Jang Y., Song W., Cosio-Lima L.M., Roltsch M.H. Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. J. Physiol. Sci. 2017; 67 (6): 639–654. DOI: 10.1007/s12576-017-0555-7.

48. Manzanillo P.S., Ayres J.S., Watson R.O., Collins A.C., Souza G., Rae C.S., Schneider D.S., Nakamura K., Shiloh M.U., Cox J.S. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature. 2013; 501 (7468): 512–516. DOI: 10.1038/nature12566.

49. Bingol B., Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic. Biol. Med. 2016; 100: 210–222. DOI: 10.1016/j.freeradbiomed.2016.04.015.

50. Ney P.A. Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX. Biochim. Biophys. Acta. 2015; 1853 (10 Pt B): 2775–2783. DOI: 10.1016/j.bbamcr.2015.02.022.

51. Wu Q., Luo C.L., Tao L.Y. Dynamin-related protein 1 (Drp1) mediating mitophagy contributes to the pathophysiology of nervous system diseases and brain injury. Histol. Histopathol. 2017; 32 (6): 551–559. DOI:10.14670/HH-11-841.

52. Yamaguchi O., Murakawa T., Nishida K., Otsu K. Receptor-mediated mitophagy. J. Mol. Cell. Cardiol. 2016; 95: 50–56. DOI: 10.1016/j.yjmcc.2016.03.010.

53. Sandoval H., Thiagarajan P., Dasgupta S.K., Schumacher A., Prchal J.T., Chen M., Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature. 2008; 454 (7201): 232–235. DOI: 10.1038/nature07006.

54. Zhang W., Siraj S., Zhang R., Chen Q. Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy. 2017; 13 (6): 1080–1081. DOI: 10.1080/15548627.2017.1300224.

55. Chen M., Chen Z., Wang Y., Tan Z., Zhu C., Li Y., Han Z., Chen L., Gao R., Liu L., Chen Q. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 2016; 12 (4): 689–702. DOI:10.1080/15548627.2016.1151580.

56. Li L., Tan J., Miao Y., Lei P., Zhang Q. ROS and autophagy: Interactions and molecular regulatory mechanisms. Cell Mol. Neurobiol. 2015; 35 (5): 615–621. DOI: 10.1007/s10571-015-0166-x.

57. Liu L., Sakakibara K., Chen Q., Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014; 24 (7): 787–795. DOI: 10.1038/cr.2014.75.

58. Milani P., Ambrosi G., Gammoh O., Blandini F., Cereda C. SOD1 and DJ-1 converge at Nrf2 pathway: a cluefor antioxidant therapeutic potential in neurodegeneration. Oxid. Med. Cell Longev. 2013; 2013: 836760. DOI: 10.1155/2013/836760.

59. Im J.Y., Lee K.W., Woo J.M., Junn E., Mouradian M.M. DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum. Mol. Genet. 2012; 21 (13): 3013–3024. DOI: 10.1093/hmg/dds131.

60. Kerr J.S., Adriaanse B.A., Greig N.H., Mattson M.P., Cader M.Z., Bohr V.A., Fang E.F. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci. 2017; 40 (3): 151–166. DOI: 10.1016/j.tins.2017.01.002.

61. Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 2012; 441 (2): 523–540. DOI: 10.1042/BJ20111451.

62. Yan Y., Finkel T. Autophagy as a regulator of cardiovascular redox homeostasis. Free Radic. Biol. Med. 2017; 109: 108–113. DOI: 10.1016/j.freeradbiomed.2016.12.003.

63. Moyzis A.G., Sadoshima J., Gustafsson A.B. Mending a broken heart: the role of mitophagy in cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 2015; 308 (3):H183–H192. DOI: 10.1152/ajpheart.00708.2014.

64. Jin H.S., Suh H.W., Kim S.J., Jo E.K. Mitochondrial control of innate immunity and inflammation. Immune Netw. 2017; 17 (2): 77–88. DOI: 10.4110/in.2017.17.2.77.

65. Picca A., Lezza A.M.S., Leeuwenburgh C., Pesce V., Calvani R., Landi F., Bernabei R., Marzetti E. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. Int. J. Mol. Sci. 2017; 18 (5): E902. DOI: 10.3390/ijms18050933.

66. Springer M.Z., Macleod K.F. Mitophagy: mechanisms and role in human disease. J. Pathol. 2016; 240 (3): 253–255. DOI: 10.1002/path.4774.

67. Trempe J.F., Fon E.A. Structure and function of Parkin, PINK1, and DJ-1, the three musketeers of neuroprotection. Front. Neurol. 2013; 4: 38. DOI: 10.3389/fneur.2013.00038.

68. Galluzzi L., Bravo-San Pedro J.M., Levine B., Green D.R., Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 2017; 16 (7): 487–511. DOI: 10.1038/nrd.2017.22.

69. Palikaras K., Daskalaki I., Markaki M., Tavernarakis N. Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacol. Ther. 2017; 178: 157–174. DOI: 10.1016/j.pharmthera.2017.04.005.

70. Wang Z.Y., Liu J.Y., Yang C.B., Malampati S., Huang Y.Y.,Li M.X., Li M., Song J.X. Neuroprotective natural products for the treatment of Parkinson’s disease by targeting the autophagy-lysosome pathway: A systematic review. Phytother. Res. 2017; 31 (8): 1119–1127. DOI: 10.1002/ptr.5834.

71. Zenkov N.K., Chechushkov A.V., Kozhin P.M., Kandalintseva N.V., Martinovich G.G., Menshchikova E.B. Plant phenols and autophagy. Biochemistry (Mosc.). 2016; 81 (4): 297–314. DOI: 10.1134/S0006297916040015.

72. Sanchez A.M., Bernardi H., Py G., Candau R.B. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014; 307 (8): R956–R969. DOI: 10.1152/ajpregu.00187.2014.

73. Wani W.Y., Gudup S., Sunkaria A., Bal A., Singh P.P., Kandimalla R.J., Sharma D.R., Gill K.D. Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain. Neuropharmacology. 2011; 61 (8): 1193–1201. DOI: 10.1016/j.neuropharm.2011.07.008.

74. Till A., Lakhani R., Burnett S.F., Subramani S. Pexophagy: the selective degradation of peroxisomes. Int. J. Cell Biol. 2012; 2012: 512721. DOI: 10.1155/2012/512721.

75. Zientara-Rytter K., Subramani S. Autophagic degradation of peroxisomes in mammal. Biochem. Soc. Trans. 2016; 44 (2): 431–440. DOI: 10.1042/BST20150268.

76. Zhang J., Tripathi D.N., Jing J., Alexander A., Kim J., Powell R.T., Dere R., Tait-Mulder J., Lee J.H., Paull T.T., Pandita R.K., Charaka V.K., Pandita T.K., Kastan M.B., Walker C.L. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 2015; 17 (10): 1259–1269. DOI: 10.1038/ncb3230.

77. Fransen M., Nordgren M., Wang B., Apanasets O. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim. Biophys. Acta. 2012; 1822 (9): 1363–1373. DOI: 10.1016/j.bbadis.2011.12.001.

78. Pascual-Ahuir A., Manzanares-Estreder S., Proft M. Pro- and antioxidant functions of the peroxisome-mitochondria connection and its impact on aging and disease. Oxid. Med. Cell Longev. 2017; 2017: 9860841. DOI: 10.1155/2017/9860841.

79. Antonenkov V.D., Grunau S., Ohlmeier S., Hiltunen J.K. Peroxisomes are oxidative organelles. Antioxid. Redox Signal. 2010; 13 (4): 525–537. DOI: 10.1089/ars.2009.2996.

80. Del Rio L.A., Lopez-Huertas E. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol. 2016; 57 (7): 1364–1376. DOI: 10.1093/pcp/pcw076.

81. Tripathi D.N., Zhang J., Jing J., Dere R., Walker C.L. A new role for ATM in selective autophagy of peroxisomes (pexophagy). Autophagy. 2016; 12 (4): 711–712. DOI: 10.1080/15548627.2015.1123375.

82. Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012; 24 (5): 981–990. DOI:10.1016/j.cellsig.2012.01.008.

83. Sargent G., van Zutphen T., Shatseva T., Zhang L., Di Giovanni V., Bandsma R., Kim P.K. PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. J. Cell Biol. 2016; 214 (6): 677–690. DOI: 10.1083/jcb.201511034.

84. Nazarko T.Y. Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders. Autophagy. 2017; 13 (5): 991–994. DOI: 10.1080/15548627.2017.1291480.

85. Waterham H.R., Ebberink M.S. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim. Biophys. Acta. 2012; 1822 (9): 1430–1441. DOI: 10.1016/j.bbadis.2012.04.006.

86. Дедов И.И., Смирнова О.М., Горелышев А.С. Стресс эндоплазматического ретикулума: цитологический сценарий патогенеза заболеваний человека. Проблемы эндокринологии. 2012; 58 (5): 57–65.

87. Çаводник И.Б. Митохондрии, кальциевый гомеостаз и кальциевая сигнализация. Биомедицинская химия. 2016; 62 (3): 311–317.

88. Bootman M.D., Chehab T., Bultynck G., Parys J.B., Rietdorf K. The regulation of autophagy by calcium signals: Do we have a consensus? Cell Calcium. 2018; 70: 32–46. DOI: 10.1016/j.ceca.2017.08.005.

89. Bhandary B., Marahatta A., Kim H.R., Chae H.J. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int. J. Mol. Sci. 2012; 14 (1): 434–456. DOI: 10.3390/ijms14010434.

90. Delaunay-Moisan A., Appenzeller-Herzog C. The antioxidant machinery of the endoplasmic reticulum: Protection and signaling. Free Radic. Biol. Med. 2015; 83: 341–351. DOI: 10.1016/j.freeradbiomed.2015.02.019.

91. Zito E. ERO1: A protein disulfide oxidase and H2O2 producer. Free Radic. Biol. Med. 2015; 83: 299–304. DOI: 10.1016/j.freeradbiomed.2015.01.011.

92. Araki K., Inaba K. Structure, mechanism, and evolution of Ero1 family enzymes. Antioxid. Redox Signal. 2012; 16 (8): 790–799. DOI: 10.1089/ars.2011.4418.

93. Laurindo F.R., Araujo T.L., Abrahao T.B. Nox NADPH oxidases and the endoplasmic reticulum. Antioxid. Redox Signal. 2014; 20 (17): 2755–2775. DOI: 10.1089/ars.2013.5605.

94. Takac I., Schroder K., Zhang L., Lardy B., Anilkumar N., Lambeth J.D., Shah A.M., Morel F., Brandes R.P. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J. Biol. Chem. 2011; 286 (15): 13304–13313. DOI: 10.1074/jbc.M110.192138.

95. Forte M., Palmerio S., Yee D., Frati G., Sciarretta S. Functional role of Nox4 in autophagy. Adv. Exp. Med. Biol. 2017; 982: 307–326. DOI: 10.1007/978-3-319-55330-6_16.

96. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017; 11: 613–619. DOI: 10.1016/j.redox.2016.12.035.

97. Cebollero E., Reggiori F., Kraft C. Reticulophagy and ribophagy: regulated degradation of protein production factories. Int. J. Cell Biol. 2012; 2012: 182834. DOI:10.1155/2012/182834.

98. Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 2009; 11 (12): 1433–1437. DOI:10.1038/ncb1991.

99. Khaminets A., Heinrich T., Mari M., Grumati P., Huebner A.K., Akutsu M., Liebmann L., Stolz A., Nietzsche S., Koch N., Mauthe M., Katona I., Qualmann B., Weis J., Reggiori F., Kurth I., Hubner C.A., Dikic I. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature. 2015; 522 (7556): 354–358. DOI: 10.1038/nature14498.

100. Nakatogawa H., Mochida K. Reticulophagy and nucleophagy: New findings and unsolved issues. Autophagy. 2015; 11 (12): 2377–2378. DOI: 10.1080/15548627.2015.1106665.

101. Fan T., Chen L., Huang Z., Mao Z., Wang W., Zhang B., Xu Y., Pan S., Hu H., Geng Q. Autophagy decreases alveolar macrophage apoptosis by attenuating endoplasmic reticulum stress and oxidative stress. Oncotarget. 2016; 7 (52): 87206–87218. DOI: 10.18632/oncotarget.13560.

102. Zhang C., Syed T.W., Liu R., Yu J. Role of endoplasmic reticulum stress, autophagy, and inflammation in cardiovascular disease. Front. Cardiovasc. Med. 2017; 4: 29. DOI: 10.3389/fcvm.2017.00029.

103. Cao S.S., Kaufman R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 2014; 21 (3): 396–413. DOI: 10.1089/ars.2014.5851.

104. Lapaquette P., Guzzo J., Bretillon L., Bringer M.A. Cellular and molecular connections between autophagy and inflammation. Mediators Inflamm. 2015; 2015: 398483. DOI: 10.1155/2015/398483.

105. Linxweiler M., Schick B., Zimmermann R. Let’s talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct. Target Ther. 2017; 2: 17002. DOI: 10.1038/sigtrans.2017.2.

106. Dias V., Junn E., Mouradian M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 2013; 3 (4): 461–491. DOI: 10.3233/JPD-130230.

107. Correia S.C., Resende R., Moreira P.I., Pereira C.M. Alzheimer’s disease-related misfolded proteins and dysfunctional organelles on autophagy menu. DNA Cell Biol. 2015; 34 (4): 261–273. DOI: 10.1089/dna.2014.2757.

108. Currais A., Fischer W., Maher P., Schubert D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J. 2017; 31 (1): 5–10. DOI: 10.1096/fj.201601184.

109. Fujita K., Srinivasula S.M. TLR4-mediated autophagy in macrophages is a p62-dependent type of selective autophagy of aggresome-like induced structures (ALIS). Autophagy. 2011; 7 (5): 552–554. DOI: 10.4161/auto.7.5.15101.

110. Hohn A., Jung T., Grune T. Pathophysiological importance of aggregated damaged proteins. Free Radic. Biol. Med. 2014; 71: 70–89. DOI: 10.1016/j.freeradbiomed.2014.02.028.

111. Ланкин В.Ç., Тихазе А.К. Важная роль свободнорадикальных процессов в этологии и патогенезе атеросклероза и сахарного диабета. Кардиология. 2016; 56 (12): 97–105.

112. Jackson M.P., Hewitt E.W. Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays Biochem. 2016; 60 (2): 173–180. DOI: EBC20160005 [pii].

113. Trnkova L., Drsata J., Bousova I. Oxidation as an important factor of protein damage: Implications for Maillard reaction. J. Biosci. 2015; 40 (2): 419–439.

114. Heinecke J.W. Oxidized amino acids: culprits in human atherosclerosis and indicators of oxidative stress. Free Radic. Biol. Med. 2002; 32 (11): 1090–1101. DOI:10.1016/S0891-5849(02)00792-X.

115. Давыдов В.В., Божков А.И. Карбонильный стресс как неспецифический фактор патогенеза. Журнал НАМН України. 2014; 20 (1): 25–34.

116. Gaschler M.M., Stockwell B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017; 482 (3): 419–425. DOI: 10.1016/j.bbrc.2016.10.086.

117. Hauck A.K., Bernlohr D.A. Oxidative stress and lipotoxicity. J. Lipid Res. 2016; 57 (11): 1976–1986. DOI: 10.1194/jlr.R066597.

118. Ансари Н.А., Рашид Ç. Неферментативное гликирование белков: от диабета до рака. Биомедицинская химия. 2010; 56 (2): 168–178. [Ansari N.A., Rasheed Z. Non-enzymatic glycation of proteins: from diabetes to cancer. Biomedical Сhemistry. 2010; 56 (2): 168–178 (in Russ.)].

119. Singh V.P., Bali A., Singh N., Jaggi A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014; 18 (1): 1–14. DOI: 10.4196/kjpp.2014.18.1.1.

120. Rashid M.A., Haque M., Akbar M. Detoxification of carbonyl compounds by carbonyl reductase in neurodegeneration. Adv. Neurobiol. 2016; 12: 355–365. DOI:10.1007/978-3-319-28383-8_19.

121. Kenific C.M., Debnath J. NBR1-dependent selective autophagy is required for efficient cell-matrix adhesion site disassembly. Autophagy. 2016; 12 (10): 1958–1959. DOI: 10.1080/15548627.2016.1212789.

122. Cohen-Kaplan V., Ciechanover A., Livneh I. p62 at the crossroad of the ubiquitin-proteasome system and autophagy. Oncotarget. 2016; 7 (51): 83833–83834. DOI:10.18632/oncotarget.13805.

123. Watanabe Y., Tsujimura A., Taguchi K., Tanaka M. HSF1 stress response pathway regulates autophagy receptor SQSTM1/p62-associated proteostasis. Autophagy. 2017; 13 (1): 133–148. DOI: 10.1080/15548627.2016.1248018.

124. Korac J., Schaeffer V., Kovacevic I., Clement A.M., Jungblut B., Behl C., Terzic J., Dikic I. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 2013; 126 (Pt 2):580–592. DOI: 10.1242/jcs.114926.

125. Ying H., Yue B.Y. Optineurin: The autophagy connection. Exp. Eye Res. 2016; 144: 73–80. DOI: 10.1016/j.exer.2015.06.029.

126. Бунеева О.А., Медведев А.Е. Роль атипичного убиквитинирования в клеточной регуляции. Биомедицинская химия. 2016; 62 (5): 496–509.

127. Shah S.Z.A., Zhao D., Hussain T., Yang L. Role of the AMPK pathway in promoting autophagic flux via modulating mitochondrial dynamics in neurodegenerative diseases: Insight into prion diseases. Ageing Res. Rev. 2017; 40: 51–63. DOI: 10.1016/j.arr.2017.09.004.

128. Çенков Н.К., Кожин П.М., Чечушков А.В., Мартинович Г.Г., Кандалинцева Н.В., Меньщикова Е.Б. Лабиринты регуляции Nrf2. Биохимия. 2017; 82 (5):757–767.

129. Katsuragi Y., Ichimura Y., Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 2015; 282 (24): 4672–678. DOI: 10.1111/febs.13540.

130. Copple I.M., Lister A., Obeng A.D., Kitteringham N.R., Jenkins R.E., Layfield R., Foster B.J., Goldring C.E., Park B.K. Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J. Biol. Chem. 2010; 285 (22): 16782–16788. DOI: 10.1074/jbc.M109.096545.

131. Bellezza I., Giambanco I., Minelli A., Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta. 2018; 1865 (5): 721–733. DOI:10.1016/j.bbamcr.2018.02.010.

132. Ichimura Y., Waguri S., Sou Y.S., Kageyama S., Hasegawa J., Ishimura R., Saito T., Yang Y., Kouno T., Fukutomi T., Hoshii T., Hirao A., Takagi K., Mizushima T., Motohashi H., Lee M.S., Yoshimori T., Tanaka K., Yamamoto M., Komatsu M. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell. 2013; 51 (5): 618–631. DOI: 10.1016/j.molcel.2013.08.003.

133. Ishimura R., Tanaka K., Komatsu M. Dissection of the role of p62/Sqstm1 in activation of Nrf2 during xenophagy. FEBS Lett. 2014; 588 (5): 822–828. DOI: 10.1016/j.febslet.2014.01.045.

134. Rhee S.G., Bae S.H. The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic. Biol. Med. 2015; 88 (Pt B):205–211. DOI: 10.1016/j.freeradbiomed.2015.06.007.

135. Pajares M., Jimenez-Moreno N., Garcia-Yague A.J., Escoll M., de Ceballos M.L., Van Leuven F., Rabano A., Yamamoto M., Rojo A.I., Cuadrado A. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016; 12 (10): 1902–1916. DOI: 10.1080/15548627.2016.1208889.

136. Pajares M., Cuadrado A., Rojo A.I. Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biol. 2017; 11: 543–553. DOI: 10.1016/j.redox.2017.01.006.

137. Cominacini L., Mozzini C., Garbin U., Pasini A., Stranieri C., Solani E., Vallerio P., Tinelli I.A., Fratta Pasini A. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic. Biol. Med. 2015; 88 (Pt B): 233–242. DOI: 10.1016/j.freeradbiomed.2015.05.027.

138. Nakamura S., Yoshimori T. Autophagy and longevity. Mol. Cells. 2018; 41 (1): 65–72. DOI: 10.14348/molcells.2018.2333.

139. Das C.K., Mandal M., Kogel D. Pro-survival autophagy and cancer cell resistance to therapy. Cancer Metastasis Rev. 2018; 37 (4): 749–766. [Epub ahead of print]. DOI:10.1007/s10555-018-9727-z.


Для цитирования:


Зенков Н.К., Чечушков А.В., Кожин П.М., Мартинович Г.Г., Кандалинцева Н.В., Меньщикова Е.Б. Аутофагия как механизм защиты при окислительном стрессе. Бюллетень сибирской медицины. 2019;18(2):195-214. https://doi.org/10.20538/1682-0363-2019-2-195-214

For citation:


Zenkov N.K., Chehushkov A.V., Kozhin P.M., Martinovich G.G., Kandalintseva N.V., Menshchikova E.B. Autophagy as a protective mechanism in oxidative stress. Bulletin of Siberian Medicine. 2019;18(2):195-214. (In Russ.) https://doi.org/10.20538/1682-0363-2019-2-195-214

Просмотров: 35


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)