Preview

Бюллетень сибирской медицины

Расширенный поиск

Влияние модуляторов метилирования ДНК на продукцию остеопротегерина ревматоидными фибробластоподобными синовиоцитами in vitro, их миграцию и инвазию

https://doi.org/10.20538/1682-0363-2019-3-116-124

Полный текст:

Аннотация

Цель. Изучить влияние модуляторов метилирования ДНК на продукцию провоспалительных цитокинов фибробластоподобными синовиальными клетками (ФСК).

Материалы и методы. Использовались клетки, полученные из синовиальной ткани шести больных активным ревматоидным артритом (РА) после 3–7 пассажей культивирования in vitro.

Результаты. Установлено, что культуры ФСК больных РА при стимуляции IL-1β увеличивают продукцию остеопротегерина (ОПГ). Внесение в культуры метилирующих соединений – S-аденозилметионина (SAMе) и генистеина – приводило к статистически значимому снижению продукции ОПГ, а добавление деметилирующего агента гидралазина не меняло синтез цитокина. Все три используемых модулятора метилирования ДНК в разных концентрациях статистически значимо снижали количество спонтанно мигрировавших и инвазивных ФСК в камере Бойдена.

Заключение. Ферменты и молекулярные комплексы, участвующие в процессах метилирования ДНК, являются потенциальными терапевтическими мишенями, а культура ФСК больных РА in vitro может быть моделью для доклинического скрининга новых лекарственных соединений. 

Об авторах

М. А. Шнайдер
Научно-исследовательский институт фундаментальной и клинической иммунологии (НИИФКИ)
Россия

аспирант, лаборатория клинической иммунофармакологии,

630099, г. Новосибирск, ул. Ядринцевская, 14



В. С. Ширинский
Научно-исследовательский институт фундаментальной и клинической иммунологии (НИИФКИ)
Россия

д-р мед. наук, профессор, гл. науч. сотрудник, лаборатория клинической иммунофармакологии,

630099, г. Новосибирск, ул. Ядринцевская, 14



Н. Ю. Калиновская
Научно-исследовательский институт фундаментальной и клинической иммунологии (НИИФКИ)
Россия

канд. мед. наук, лаборант, лаборатория клинической иммунофармакологии,

630099, г. Новосибирск, ул. Ядринцевская, 14



И. В. Ширинский
Научно-исследовательский институт фундаментальной и клинической иммунологии (НИИФКИ)
Россия

д-р мед. наук, вед. науч. сотрудник, лаборатория клинической иммунофармакологии,

630099, г. Новосибирск, ул. Ядринцевская, 14



Список литературы

1. Huber L.C., Distler O., Tarner I., Gay R.E., Gay S., Pap T. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford). 2006; 45 (6): 669–675. DOI: 10.1093/rheumatology/kel065.

2. Müller-Ladner U., Kriegsmann J., Franklin B.N., Matsumoto S., Geiler T., Gay R.E., Gay S. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am. J. Pathol. 1996; 149 (5): 1607–1615.

3. Lefèvre S., Knedla A., Tennie C., Kampmann A., Wunrau C., Dinser R., Korb A., Schnäker E.M., Tarner I.H., Robbins P.D., Evans C.H, Stürz H., Steinmeyer J., Gay S., Schölmerich J., Pap T., Müller-Ladner U., Neumann E. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 2009; 15 (12): 1414–1420. DOI: 10.1038/nm.2050.

4. Шнайдер М.А., Ширинский В.С., Ширинский И.В. Культура фибробластоподобных синовиальных клеток больных ревматоидным артритом: свойства и возможности. Медицинская иммунология. 2016; 18 (2): 107–118.

5. Boyle W.J., Simonet W.S., Lacey D.L. Osteoclast differentiation and activation. Nature. 2003; 423: 337–342. DOI: 10.1038/nature01658.

6. Takayanagi H., Oda H., Yamamoto S., Kawaguchi H., Tanaka S., Nishikawa T., Koshihara Y. A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem. Biophys. Res. Commun. 1997; 240 (2): 279–286. DOI: 10.1006/bbrc.1997.7404.

7. Lacey D.L., Timms E., Tan H.-L., Kelley M.J., Dunstan C.R., Burgess T., Elliot R., Colombero A., Elliot G., Scully S., Hsu H., Sullivan J., Hawkins N., Davy E., Capparelli C., Eli A., Qian Y.X., Kaufman S., Sarosi I., Shalhoub V., Senaldi G., Guo J., Delaney J., Boyle W.J. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998; 93: 165–176. DOI: 10.1016/S0092-8674(00)81569-X.

8. Haynes D.R., Barg E., Crotti T.N., Holding C., Weedon H., Atkins G.J., Zannetino A., Ahern M.J., Coleman M., Roberts-Thomson P.J., Kraan M., Tak P.P., Smith M.D. Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls. Rheumatology (Oxford), 2003. 42 (1): 123–134.

9. Crotti T.N., Ahern M.J., Lange K., Weedon H., Coleman M., Roberts-Thomson P.J., Haynes D.R., Smith M.D. Variability of RANKL and osteoprotegerin staining in synovial tissue from patients with active rheumatoid arthritis: quantification using color video image analysis. J. Rheumatol. 2003; 30 (11): 2319–2324.

10. Fonseca J.E., Cortez-Dias N., Francisco A., Sobral M., Canhão H., Resende C., Castelão W., Macieira C., Sequeira G., Saraiva F., Pereira da Silva J.A., Carmo-Fonseca M., Viana Queiroz M. Inflammatory cell infiltrate and RANKL/OPG expression in rheumatoid synovium: comparison with other inflamatory arthropathies and correlation with outcome. Clin. Exp. Rheumatol. 2005; 23 (2): 185–192.

11. Skoumal M., Kolarz G., Haberhauer G., Woloszczuk W., Hawa G., Klingler A. Osteoprotegerin and the receptor activator of NF-kappa B ligand in the serum and synovial fluid. A comparison of patients with longstanding rheumatoid arthritis and osteoarthritis. Rheumatol. Int. 2005; 26 (1): 63–69. DOI: 10.1007/s00296-004-0579-1.

12. Moutasim K.A., Nystrom M.L., Thomas G.J. Cell migration and invasion assays. Methods in Molecular Biology. 2011; 731: 333–343. DOI: 10.1007/978-1-61779-080-5_27.

13. Bartok B., Firestein G.S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010; 233 (1): 233–255. DOI: 10.1111/j.0105-2896.2009.00859.x.

14. Portela A., Esteller M. Epigenetic modifications and human diseases. Nat. Biotechnol. 2010; 28 (10): 1057–1068. DOI: 10.1038/nbt.1685.

15. Dolinoy D.C., Weidman J.R., Waterland R.A., Jirtle R.L. Maternal genistein alters coat color and protects avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 2006; 114 (4): 567–572. DOI: 10.1289/ehp.8700.

16. Li J., Gang D., Yu X., Hu Y., Yue Y., Cheng W., Pan X., Zhang P. Genistein: the potential for efficacy in rheumatoid arthritis. Clin. Rheumatol. 2013; 32 (5): 535–540. DOI: 10.1007/s10067-012-2148-4.

17. Arce C., Segura-Pacheco B., Perez-Cardenas E., TajaChayeb L., Candelaria M., Duennas-Gonzalez A. Hydralazine target: from blood vessels to the epigenome. J. Transl. Med. 2006; 4: 10–22. DOI: 10.1186/1479-5876-4-10.

18. Lydersen S. Statistical review: frequently given comments. Ann. Rheum. Dis. 2015; 74 (2): 323–325. DOI: 10.1136/annrheumdis-2014-206186.

19. Firestein G.S. Etiology and pathogenesis of rheumatoid arthritis. In: Firestein G.S., Budd R.C., Harris T., McInnes I.B., Ruddy S., Sergent J.S., editors. Kelly’s Textbook of Rheumatology. Philadelphia, PA: Saunders Elsevier, 2009: 1035–1086. DOI: 10.1016/B978-0-323-31696-5.00069-3.

20. Redlich K., Hayer S., Ricci R., David J.P., Tohidast-Akrad M., Kollias G., Steiner G., Smolen J.S., Wagner E.F., Schett G. Osteoclasts are essential for TNF-a-mediated joint destruction. J. Clin. Invest. 2002; 110 (10): 1419–1427. DOI: 10.1172/JCI15582.

21. Bromley M., Woolley D.E. Chondrocytes and osteoclasts at subchondral sites of erosions in the rheumatoid joint. Arthitis Rheum. 1984; 27 (9): 968–975.

22. Gravallese E.M., Manning C., Tsay A., Naito A., Pan C., Amento E., Goldring S.R. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000; 43: 250–258. DOI: 10.1002/1529-0131(200002)43:23.0.co;2-p

23. Yasuda H., Shima N., Nakagawa N., Yamaguchi K., Kinosaki M., Mochizuki S.-I., Tomoyasu A., Yano K., Goto M., Murakami A., Tsuda E., Morinaga T., Higashio K., Udagawa N., Takahashi N., Suda T. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Nat. Acad. Sci. USA. 1998; 95 (7): 3597–3602.

24. Simonet W.S., Lacey D.L., Dunstan C.R., Kelley M., Chang M.S., Lüthy R., Nguyen H.Q., Wooden S., Bennett L., Boone T., Shimamoto G., DeRose M., Elliott R., Colombero A., Tan H.L., Trail G., Sullivan J., Davy E., Bucay N., Renshaw-Gegg L., Hughes T.M., Hill D., Pattison W., Campbell P., Sander S., Van G., Tarpley J., Derby P., Lee R., Boyle W.J. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997; 89: 309–319. DOI: 10.1016/S0092-8674(00)80209-3.

25. Hofbauer L.C., Khosla S., Dunstan C.R., Lacey D.L., Boyle W.J., Riggs B.L. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J. Bone Miner. Res. 2000; 15: 2–12. DOI: 10.1359/jbmr.2000.15.1.2.

26. Yano K., Nakagawa N., Yasuda H., Tsuda E., Higashio K. Synovial cells from a patient with rheumatoid arthritis produce osteoclastogenesis inhibitory factor/ osteoprotegerin: reciprocal regulation of the production by inflammatory cytokines and basic fibroblast growth factor. J. Bone Miner. Metab. 2001; 19 (6): 365–372. DOI: 10.1007/s007740170006.

27. Klein K., Ospelt C., Gay S. Epigenetic contributions in the development of rheumatoid arthritis. Arthritis Res. Ther. 2012; 14 (6): 227. DOI: 10.1186/ar4074.

28. Bustamante M.F., Garcia-Carbonell R., Whisenant K.D., Guma M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis. Res. Ther. 2017; 19 (1): 110. DOI: 10.1186/s13075-017-1303-3.

29. Kramer N., Walzl A., Unger C., Rosner M., Krupitza G., Hengstschläger M., Dolznig H. In vitro cell migration and invаsion assays. Mutat. Res. 2013; 752 (1): 10–24. DOI: 10.1016/j.mrrev.2012.08.001.

30. Shelef M.A., Bennin D.A., Yasmin N., Warner T.F., Ludwig T., Beggs H.E., Huttenlocher A. Focal adhesion kinase is required for synovial fibroblast invasion, but not murine inflammatory arthritis. Arthritis Res. Ther. 2014; 16 (5): 464. DOI: 10.1186/s13075-014-0464-6.


Для цитирования:


Шнайдер М.А., Ширинский В.С., Калиновская Н.Ю., Ширинский И.В. Влияние модуляторов метилирования ДНК на продукцию остеопротегерина ревматоидными фибробластоподобными синовиоцитами in vitro, их миграцию и инвазию. Бюллетень сибирской медицины. 2019;18(3):116-124. https://doi.org/10.20538/1682-0363-2019-3-116-124

For citation:


Shnayder M.A., Shirinsky V.S., Kalinovskaya N.Y., Shirinsky I.V. Effect of DNA methylation modulators on the production of osteoprotegerin by rheumatoid fibroblast-like synoviocytes in vitro: their migration and invasion. Bulletin of Siberian Medicine. 2019;18(3):116-124. (In Russ.) https://doi.org/10.20538/1682-0363-2019-3-116-124

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)