Preview

Бюллетень сибирской медицины

Расширенный поиск

МикроРНК и малые интерферирующие РНК как инструменты направленной регуляции клеточных процессов для терапии онкологических заболеваний

https://doi.org/10.20538/1682-0363-2020-1-160-171

Полный текст:

Аннотация

МикроРНК и малые интерферирующие РНК (миРНК) относятся к обширному классу малых некодирующих РНК и играют важную роль в регуляции экспрессии генов в клетках. Показано, что изменения в количестве или эффективности воздействия этих молекул могут сопровождать развитие различных заболеваний, включая онкологические. Это позволило рассматривать их как перспективные диагностические и прогностические маркеры, а также инструменты для направленной регуляции синтеза белков в клетке и мишени для терапии. В данном обзоре суммированы основные знания о биогенезе, распространении и механизмах воздействия микроРНК и миРНК, а также способы направленного влияния на экспрессию генов с их помощью, используемые в настоящее время. Рассмотрены возможные варианты доставки молекул в клетку in vitro и in vivo.

Об авторах

А. В. Комина
Красноярский научный центр (КНЦ) Сибирского отделения Российской академии наук (СО РАН); Национальный медицинский исследовательский центр (НМИЦ) гематологии
Россия

канд. биол. наук, науч. сотрудник

Россия, 660036, г. Красноярск, ул. Академгородок, 50

Россия, 660036, г. Красноярск, ул. Академгородок, 15А



С. Н. Лаврентьев
Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого (КрасГМУ им. проф. В.Ф. Войно-Ясенецкого)
Россия
аспирант

Россия, 660022, г. Красноярск, ул. Партизана Железняка, 1


Т. Г. Рукша
Красноярский государственный медицинский университет им. проф. В.Ф. Войно-Ясенецкого (КрасГМУ им. проф. В.Ф. Войно-Ясенецкого)
Россия
д-р мед. наук, профессор, проректор по научной работе

Россия, 660022, г. Красноярск, ул. Партизана Железняка, 1


Список литературы

1. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75 (5): 843–854. DOI: 10.1016/0092-8674(93)90529-Y.

2. Lam J.K., Chow M.Y., Zhang Y., Leung S.W. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids. 2015; 4: e252. DOI: 10.1038/mtna.2015.23.

3. Willms E., Johansson H.J., Mäger I., Lee Y., Blomberg K.E., Sadik M., Alaarg A., Smith C.I., Lehtiö J., El Andaloussi S., Wood M.J., Vader P. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 2016; 6: 22519. DOI: 10.1038/srep22519.

4. Li M., Zeringer E., Barta T., Schageman J., Cheng A., Vlassov A.V. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos. Trans R. SocLon. B Biol. Sci. 2014; 369 (1652): 20130502. DOI: 10.1098/rstb.2013.0502.

5. Roberson C.D., Atay S., Gercel-Taylor C., Taylor D.D. Tumor derived exosomes as mediators of disease and potential diagnostic biomarkers. Cancer Biomark. 2010–2011; 8 (4–5): 281–291. DOI: 10.3233/CBM-2011-0211.

6. Liao J.-Y., Ma L.-M., Guo Y.-H., Zhang Y.-C., Zhou H., Shao P., Chen Y.-Q., Qu L.-H. Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One. 2010; 5 (5): e10563. DOI: 10.1371/journal.pone.0010563.

7. Gagnon K.T., Li L., Chu Y., Janowski B.A., Corey D.R. RNAi factors are present and active in human cell nuclei. Cell Rep. 2014; 6 (1): 211–221. DOI: 10.1016/j.celrep.2013.12.013.

8. Kawasaki H., Taira K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature. 2004; 431 (7005): 211–217. DOI: 10.1038/nature02889.

9. Miranda K.C., Huynh T., Tay Y., Ang Y.S., Tam W.L., Thomson A.M., Lim B., Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006; 126 (6): 1203–1217. DOI: 10.1016/j.cell.2006.07.031.

10. Lal A., Navarro F., Maher C.A., Maliszewski L.E., Yan N., O’Day E., Chowdhury D., Dykxhoorn D.M, Tsai P., Hofmann O., Becker K.G., Gorospe M., Hide W., Lieberman J. miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. Mol. Cell. 2009; 35 (5): 610–625. DOI: 10.1016/j.molcel.2009.08.020.

11. Jin H.Y., Xiao C. MicroRNA мechanisms of action: What have we learned from mice? Front Genet. 2015; 6: 328. DOI: 10.3389/fgene.2015.00328.

12. Hausser J., Syed A.P., Bilen B., Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 2013; 23 (4): 604–615. DOI: 10.1101/gr.139758.112.

13. Takimoto K., Wakiyama M., Yokoyama S. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA. 2009; 15 (6): 1078–1089. DOI: 10.1261/rna.1363109.

14. Yi H., Park J., Ha M., Lim J., Chang H., Kim V.N. PABP Cooperates with the CCR4-NOT complex to promote mRNA deadenylation and block precocious decay. Mol. Cell. 2018; 70 (6): 1081–1088. DOI: 10.1016/j.molcel.2018.05.009.

15. Lytle J.R., Yario T.A., Steitz J.A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc. Nat. Acad. Sci. USA. 2007; 104 (23): 9667–9672. DOI: 10.1073/pnas.0703820104.

16. Nishihara T., Zekri L., Braun J.E., Izaurralde E. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res. 2013; 41 (18): 8692–8705. DOI: 10.1093/nar/gkt619.

17. Ørom U.A., Nielsen F.C., Lund A.H. MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell. 2008; 30 (4): 460–471. DOI: 10.1016/j.molcel.2008.05.001.

18. Vasudevan S., Tong Y., Steitz J.A. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007; 318 (5858): 1931–1934. DOI: 10.1126/science.1149460.

19. Lin C.C., Liu L.Z., Addison J.B., Wonderlin W.F., Ivanov A.V., Ruppert J.M. A KLF4-miRNA-206 autoregulatory feedback loop can promote or inhibit protein translation depending upon cell context. Mol. Cell Biol. 2011; 31 (12): 2513–2527. DOI: 10.1128/MCB.01189-10.

20. Leucci E., Patella F., Waage J., Holmstrøm K., Lindow M., Porse B., Kauppinen S., Lund A.H. Micro-RNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci. Rep. 2013; 3: 2535. DOI: 10.1038/srep02535.

21. Zheng L., Chen Y., Ye L., Jiao W., Song H., Mei H., Li D., Yang F., Li H., Huang K., Tong Q. MiRNA-584-3p inhibits gastric cancer progression by repressing Yin Yang 1-facilitated MMP-14 expression. Sci. Rep. 2017; 7 (1): 8967. DOI: 10.1038/s41598-017-09271-5.

22. Zhang Y., Zhang H. RNAa induced by TATA box-targeting microRNAs. Adv. Exp. Med. Biol. 2017; 983: 91–111. DOI: 10.1007/978-981-10-4310-9_7.

23. Elbashir S.M., Lendeckel W., Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001; 15 (2): 188–200.

24. Hill D.A., Ivanovich J., Priest J.R., Gurnett C.A., Dehner L.P., Desruisseau D., Jarzembowski J.A., Wikenheiser-Brokamp K.A., Suarez B.K., Whelan A.J., Williams G., Bracamontes D., Messinger Y., Goodfellow P.J. DICER1 mutations in familial pleuropulmonary blastoma. Science. 2009; 325 (5943): 965. DOI: 10.1126/science.1174334.

25. De Kock L., Terzic T., McCluggage W.G., Stewart C.J.R., Shaw P., Foulkes W.D., Clarke B.A. DICER1 mutations are consistently present in moderately and poorly differentiated Sertoli-Leydig cell tumors. Am. J. Surg. Pathol. 2017; 41 (9): 1178–1187. DOI: 10.1097/PAS.0000000000000895.

26. Robertson J.C., Jorcyk C.L., Oxford J.T. DICER1 syndrome: DICER1 mutations in rare cancers. Cancers (Basel). 2018; 10 (5): e143. DOI: 10.3390/cancers10050143.

27. Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., Rassenti L., Alder H., Volinia S., Liu C.G., Kipps T.J., Negrini M., Croce C.M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Nat. Acad. Sci. USA. 2005; 102 (39): 13944–13949. DOI: 10.1073/pnas.0506654102.

28. Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E., Aldler H., Rattan S., Keating M., Rai K., Rassenti L., Kipps T., Negrini M., Bullrich F., Croce C.M. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Nat. Acad. Sci. USA. 2002; 99 (24): 15524–15529. DOI: 10.1073/pnas.242606799.

29. Shen J., Ambrosone C.B., DiCioccio R.A., Odunsi K., Lele S.B., Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008; 29 (10): 1963–1966. DOI: 10.1093/carcin/bgn172.

30. Xu T., Zhu Y., Wei Q.K., Yuan Y., Zhou F., Ge Y.Y., Yang J.R., Su H., Zhuang S.M. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis. 2008; 29 (11): 2126–2131. DOI: 10.1093/carcin/bgn195.

31. Permuth-Wey J., Thompson R.C., Burton Nabors L., Olson J.J., Browning J.E., Madden M.H., Ann Chen Y., Egan K.M. A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J. Neurooncol. 2011; 105 (3): 639–646. DOI: 10.1007/s11060-011-0634-1.

32. Wang X., Ren H., Zhao T., Ma W., Dong J., Zhang S., Xin W., Yang S., Jia L., Hao J. Single nucleotide polymorphism in the microRNA-199a binding site of HIF1A gene is associated with pancreatic ductal adenocarcinoma risk and worse clinical outcomes. Oncotarget. 2016; 7 (12): 1371–13729. DOI: 10.18632/oncotarget.7263.

33. Song F., Zheng H., Liu B., Wei S., Dai H., Zhang L., Calin G.A., Hao X., Wei Q., Zhang W., Chen K. An miR-502-binding site single-nucleotide polymorphism in the 3’-untranslated region of the SET8 gene is associated with early age of breast cancer onset. Clin. Cancer Res. 2009; 15 (19): 6292–6300. DOI: 10.1158/1078-0432.CCR-09-0826.

34. Takagi T., Iio A., Nakagawa Y., Naoe T., Tanigawa N., Akao Y. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology. 2009; 77 (1): 12–21. DOI: 10.1159/000218166.

35. Volinia S., Calin G.A., Liu C.G., Ambs S., Cimmino A., Petrocca F., Visone R., Iorio M., Roldo C., Ferracin M., Prueitt R.L., Yanaihara N., Lanza G., Scarpa A., Vecchione A., Negrini M., Harris C.C., Croce C.M. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Nat. Acad. Sci. USA. 2006; 103 (7): 2257–2261. DOI: 10.1073/pnas.0510565103.

36. Chan J.A., Krichevsky A.M., Kosik K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005; 65 (14): 6029–6033. DOI: 10.1158/0008-5472.CAN-05-0137.

37. Wei R., Yang Q., Han B., Li Y., Yao K., Yang X., Chen Z., Yang S., Zhou J., Li M., Yu H., Yu M., Cui Q. Micro-RNA-375 inhibits colorectal cancer cells proliferation by downregulating JAK2/STAT3 and MAP3K8/ERK signaling pathways. Oncotarget. 2017; 8 (10): 1663–16641. DOI: 10.18632/oncotarget.15114.

38. Shen Z.Y., Zhang Z.Z., Liu H., Zhao E.H., Cao H. MiR-375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression. Exp. Ther. Med. 2014; 7 (6): 1757–1761. DOI: 10.3892/etm.2014.1627.

39. Khan A.A., Betel D., Miller M.L., Sander C., Leslie C.S., Marks D.S. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 2009; 27 (6): 549–555. DOI: 10.1038/nbt.1543.

40. Riley K.J., Yario T.A., Steitz J.A. Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA. 2012; 18 (9): 1581–1585. DOI: 10.1261/rna.034934.112.

41. Bader A.G., Brown D., Stoudemire J., Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther. 2011; 18 (12): 1121–1126. DOI: 10.1038/gt.2011.79.

42. Koo K.H., Kwon H. MicroRNA miR-4779 suppresses tumor growth by inducing apoptosis and cell cycle arrest through direct targeting of PAK2 and CCND3. Cell Death Dis. 2018; 9 (2): 77. DOI: 10.1038/s41419-017-0100-x.

43. Huang X., Schwind S., Yu B., Santhanam R., Wang H., Hoellerbauer P., Mims A., Klisovic R., Walker A.R., Chan K.K., Blum W., Perrotti D., Byrd J.C., Bloomfield C.D., Caligiuri M.A., Lee R.J., Garzon R., Muthusamy N., Lee L.J., Marcucci G. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin. Cancer Res. 2013; 19 (9): 2355–2367. DOI: 10.1158/1078-0432.CCR-12-3191.

44. Wilusz J.E., Sunwoo H., Spector D.L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009; 23 (13): 1494–1504. DOI: 10.1101/gad.1800909.

45. Hansen T.B., Jensen T.I., Clausen B.H., Bramsen J.B., Finsen B., Damgaard C.K., Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013; 495 (7441): 384–388. DOI: 10.1038/nature11993.

46. Ebert M.S., Neilson J.R., Sharp P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods. 2007; 4 (9): 721–726. DOI: 10.1038/nmeth1079.

47. Zhou L., Jiang F., Chen X., Liu Z., Ouyang Y., Zhao W., Yu D. Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol. Lett. 2016; 12 (6): 4419–4426. DOI: 10.3892/ol.2016.5250.

48. Grünweller A., Hartmann R.K. Locked nucleic acid oligonucleotides: the next generation of antisense agents? Bio-Drugs. 2007; 21 (4): 235–243. DOI: 10.2165/00063030-200721040-00004.

49. Палкина Н.В., Комина А.В., Аксененко М.Б., Белоногов Р.Н., Лаврентьев С.Н., Рукша Т.Г. Жизнеспособность клеток меланомы B16 in vitro и токсичность ингибитора miR-204-5p (LNA™) in vivo при модуляции экспрессии miR-204-5p мышей. Цитология. 2018: 60 (3): 180–187. DOI: 10.31116/tsitol.2018.03.04.

50. Najafi Z., Sharifi M., Javadi G. Degradation of miR-21 induces apoptosis and inhibits cell proliferation in human hepatocellular carcinoma. Cancer Gene Ther. 2015; 22 (11): 530–535. DOI: 10.1038/cgt.2015.51.

51. Acunzo M., Romano G., Nigita G., Veneziano D., Fattore L., Laganà A., Zanesi N., Fadda P., Fassan M., Rizzotto L., Kladney R., Coppola V., Croce C.M. Selective targeting of point-mutated KRAS through artificial microRNAs. Proc. Nat. Acad. Sci. USA. 2017; 114 (21): e4203–4212. DOI: 10.1073/pnas.1620562114.

52. Jedidi A., Marty C., Oligo C., Jeanson-Leh L., Ribeil J.A., Casadevall N., Galy A., Vainchenker W., Villeval J.L. Selective reduction of JAK2V617F-dependent cell growth by siRNA/shRNA and its reversal by cytokines. Blood. 2009; 114 (9): 1842–1851. DOI: 10.1182/blood-2008-09-176875.

53. Brown P.N., Yin H. PNA-based microRNA inhibitors elicit anti-inflammatory effects in microglia cells. Chem. Commun. (Camb.). 2012; 49 (39): 4415–4417. DOI: 10.1039/c2cc36540e.

54. Giesen U., Kleider W., Berding C., Geiger A., Orum H., Nielsen P.E. A formula for thermal stability (Tm) prediction of PNA/DNA duplexes. Nucleic Acids Res. 1998; 26 (21): 5004–5006. DOI: 10.1093/nar/26.21.5004.

55. Oh S.Y., Ju Y., Kim S., Park H. PNA-based antisense oligonucleotides for micrornas inhibition in the absence of a transfection reagent. Oligonucleotides. 2010; 20 (5): 225–230. DOI: 10.1089/oli.2010.0238.

56. Fabani M.M., Abreu-Goodger C., Williams D., Lyons P.A., Torres A.G., Smith K.G.C., Enright A.J., Gait M.J., Vigorito E. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res. 2010; 38 (13): 4466–4475. DOI: 10.1093/nar/gkq160.

57. White P.J., Anastasopoulos F., Pouton C.W., Boyd B.J. Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev. Mol. Med. 2009; 11: e10. DOI: 10.1017/S1462399409001021.

58. Judge A.D., Sood V., Shaw J.R., Fang D., McClintock K., MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 2005; 23 (4): 457–462. DOI: 10.1038/nbt1081.

59. Cheng C.J., Saltzman W.M., Slack F.J. Canonical and non-canonical barriers facing antimiR cancer therapeutics. Curr. Med. Chem. 2013; 20 (29): 3582–3593. DOI: 10.2174/0929867311320290004.

60. Ben-Shushan D., Markovsky E., Gibori H., Tiram G., Scomparin A., Satchi-Fainaro R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv. Transl. Res. 2014; 4 (1): 38–49. DOI: 10.1007/s13346-013-0160-0.

61. Fernandez-Piñeiro I., Badiola I., Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol. Adv. 2017; 35 (3): 350–360. DOI: 10.1016/j.biotechadv.2017.03.002.

62. Pramanik D., Campbell N.R., Karikari C., Chivukula R., Kent O.A., Mendell J.T., Maitra A. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 2011; 10 (8): 1470–1480. DOI: 10.1158/1535-7163.MCT-11-0152.

63. Chen Y., Zhu X., Zhang X., Liu B., Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther. 2010 Sept.; 18 (9): 1650–1656. DOI: 10.1038/mt.2010.136.

64. Zhang D., Lee H., Zhu Z., Minhas J.K., Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am. J. Physiol. Lung. Cell Mol. Physiol. 2016; 312 (1): L110–121. DOI: 10.1152/ajplung.00423.2016.

65. Montoya M.M., Ansel K.M. Small RNA transfection in primary human Th17 cells by next generation electroporation. J. Vis. Exp. 2017 Apr.; 122. DOI: 10.3791/55546.

66. Yang N. An overview of viral and nonviral delivery systems for microRNA. Int. J. Pharm. Investig. 2015; 5 (4): 179–181. DOI: 10.4103/2230-973X.167646.

67. Шахбазов А.В., Космачева С.М., Картель Н.А., Потапнев М.П. Генная терапия на основе мезенхимальных стволовых клеток человека: стратегии и методы. Цитология и генетика. 2010; 1: 76–82.

68. Herrera-Carrillo E., Liu Y.P., Berkhout B. Improving miRNA delivery by optimizing miRNA expression cassettes in diverse virus vectors. Hum. Gene Ther. Methods. 2017; 28 (4): 177–190. DOI: 10.1089/hgtb.2017.036.

69. Chakraborty C., Sharma A.R., Sharma G., Doss C.G.P., Lee S.S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol. Ther. Nucleic Acids. 2017; 8: 132–143. DOI: 10.1016/j.omtn.2017.06.005.


Для цитирования:


Комина А.В., Лаврентьев С.Н., Рукша Т.Г. МикроРНК и малые интерферирующие РНК как инструменты направленной регуляции клеточных процессов для терапии онкологических заболеваний. Бюллетень сибирской медицины. 2020;19(1):160-171. https://doi.org/10.20538/1682-0363-2020-1-160-171

For citation:


Komina A.V., Lavrentiev S.N., Ruksha T.G. MicroRNAs and small interfering RNAs as tools for the directed regulation of cellular processes for cancer therapy. Bulletin of Siberian Medicine. 2020;19(1):160-171. (In Russ.) https://doi.org/10.20538/1682-0363-2020-1-160-171

Просмотров: 95


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)