Preview

Бюллетень сибирской медицины

Расширенный поиск

Технологии виртуальной реальности в комплексной медицинской реабилитации пациентов с детским церебральным параличом

https://doi.org/10.20538/1682-0363-2020-2-142-152

Полный текст:

Аннотация

Обзор посвящен вопросам применения технологий виртуальной реальности (ВР) в медицинской реабилитации пациентов с детским церебральным параличом (ДЦП). Обобщены современные данные касательно использования ВР в восстановлении двигательных, координаторных функций, а также коррекции других расстройств, сопутствующих двигательным нарушениям у пациентов с ДЦП. Анализ работ, представленных в отечественной и зарубежной литературе, показывает, что в настоящее время нельзя однозначно говорить об эффективности ВР в реабилитации пациентов с ДЦП. Это связано с рядом методологических недостатков проанализированных работ (небольшой размер изучаемой выборки, отсутствие контроля результатов в отдаленный период). Тем не менее использование технологий ВР с целью улучшения различных функций у пациентов с ДЦП является перспективным методом медицинской реабилитации.

Об авторах

Н. Н. Карякин
Приволжский исследовательский медицинский университет (ПИМУ)
Россия
д-р мед наук, доцент, ректор 

Россия, 603155, г. Нижний Новгород, Верхне-Волжская наб., 18/1



Г. Е. Шейко
Приволжский исследовательский медицинский университет (ПИМУ)
Россия
канд. мед. наук, ассистент, кафедра медицинской реабилитации

Россия, 603155, г. Нижний Новгород, Верхне-Волжская наб., 18/1


М. Г. Воловик
Приволжский исследовательский медицинский университет (ПИМУ)
Россия
д-р мед наук, вед. науч. сотрудник, отделение функциональной диагностики

Россия, 603155, г. Нижний Новгород, Верхне-Волжская наб., 18/1



А. Н. Белова
Приволжский исследовательский медицинский университет (ПИМУ)
Россия
д-р мед наук, профессор, зав. кафедрой медицинской реабилитации

Россия, 603155, г. Нижний Новгород, Верхне-Волжская наб., 18/1



Список литературы

1. Kantak S.S., Stinear J.W., Buch E.R., Cohen L.G. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabilitation and Neural. Repair. 2012; 26 (3): 282–292. DOI: 10.1177/1545968311420845.

2. Mintaze K.G., Ozgun K.K., Cemil O., Duygu T. Virtual reality in rehabilitation of children with cerebral palsy. In book: Cerebral palsy – challenges for the future. 2014: 273–300. DOI: 10.5772/57486.

3. Meyer-Heim A., van Hedel H.J. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation. Seminars in Pediatric Neurology. 2013; 20 (2): 139–145. DOI: 10.1016/j.spen.2013.06.006.

4. Баранов А.А., Намазова-Баранова Л.С., Кузенкова Л.М., Куренков А.Л., Клочкова О.А., Мамедъяров А.М., Каримова Х.М., Бурсагова Б.И., Вишнева Е.А. Детский церебральный паралич у детей. Клинические рекомендации, 2017: 62.

5. Oskoui M., Coutinho F., Dykeman J., Jette N., Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev. Med. Child Neurol. 2013; 55 (6): 509–519. DOI: 10.1111/dmcn.12080.

6. Полякова А.Г. Реабилитационный прогноз на базе интегративной оценки адаптационного потенциала больного с ограниченными возможностями. Медицинский альманах. 2018; 5 (56): 84–88. DOI: 10.21145/2499-9954-2018-5-84-88.

7. Abbaskhanian A., Rashedi V., Delpak A., Vameghi R., Gharib M. Rehabilitation interventions for children with cerebral palsy: a systematic review. Pediatr. Rev. 2015; 3 (1): 1–8. DOI: 10.5812/jpr.361.

8. Gordon C., Roopchand-Martin S., Gregg A. Potential of the Nintendo Wii as a Rehabilitation Tool for Children with Cerebral Palsy in a Developing Country: A Pilot Study. Physiotherapy. 2012; 98 (3): 238–242. DOI: 10.1016/j.physio.2012.05.011.

9. Tatla S.K., Sauve K., Virji-Babul N., Holsti L., Butler C., van der Loos H.F. Evidence for outcomes of motivational rehabilitation interventions for children and adolescents with cerebral palsy: an American Academy for Cerebral Palsy and Developmental Medicine Systematic Review. Developmental Medicine and Child Neurology. 2013; 55 (7): 593–601. DOI: 10.1111/dmcn.12147.

10. Dascal J., Reid M., Ishak W.W., Spiegel B., Recacho J., Rosen B., Danovitch I. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials. Innov. Clin. Neurosci. 2017; 14 (1–2): 14–21.

11. Hung Y.C., Gordon A.M. Virtual reality training for children with unilateral cerebral palsy. Dev. Med. Child Neurol. 2018; 60 (4): 334–335. DOI:10.1111/dmcn.13699.

12. Riener R., Harders M. Virtual reality in medicine. London: Springer, 2012: 1–2. DOI: 10.1007/978-1-4471-4011-5.

13. Jung E.Y., Park D.K., Lee Y.H., Jo H.S., Lim Y.S., Park R.W. Evaluation of practical exercises using an intravenous simulator incorporating virtual reality and haptics device technologies. Nurse Educ. Today. 2012; 32 (4): 458–463. DOI: 10.1016/j.nedt.2011.05.012.

14. Andolsek D. Virtual reality in education and training. International Journal of Instructional Media. 1995; 22 (2): 145–151.

15. Rothbaum B.O., Hodges L.F., Kooper R., Opdyke D., Williford J.S., North M. Effectiveness of computer-generated (virtual reality) graded exposure in the treatment of acrophobia. Am. J. Psychiatry. 1995; 152 (4): 626–628. DOI: 10.1176/ajp.152.4.626.

16. Mochizuki H., Schut C., Nattkemper L.A., Yosipovitch G. Brain mechanism of itch in atopic dermatitis and its possible alteration through non-invasive treatments. Allergol. Int. 2017; 66 (1): 14–21. DOI: 10.1016/j.alit.2016.08.013.

17. Jones T., Moore T., Choo J. The impact of virtual reality on chronic pain. PLoS ONE. 2016; 11 (12): e0167523. DOI: 10.1371/journal.pone.0167523.

18. Lewis G.N., Rosie J.A. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disabil. Rehabil. 2012; 34 (22): 1880–1886. DOI: 10.3109/09638288.2012.670036.

19. Weiss P.L., Tirosh E., Fehlings D. Role of virtual reality for cerebral palsy management. J. Child Neurol. 2014; 29 (8): 1119–1124. DOI: 10.1177/0883073814533007.

20. Forbes P.A.G., Pan X., Hamilton A.F. de C. Reduced mimicry to virtual reality avatars in autism spectrum disorder. J. Autism. Dev. Disord. 2016; 46 (12): 3788–3797. DOI: 10.1007/s10803-016-2930-2.

21. Duffield T.C., Parsons T.D., Landry A., Karam S., Otero T., Mastel S., Hall T. Virtual environments as an assessment modality with pediatric ASD populations: a brief report. Child Neuropsychology September. 2017; 24 (8): 1129–1136. DOI: 10.1080/09297049.2017.1375473.

22. Zapata-Fonseca L., Froese T., Schilbach L., Vogeley K., Timmermans B. Sensitivity to social contingency in adults with high-functioning Autism during computer-mediated. Embodied Interaction Behav. Sci. 2018; 8 (2): 22. DOI: 10.3390/bs8020022.

23. Dockx K., Bekkers E.M.J., van den Bergh V., Ginis P., Rochester L., Hausdoff J.M., Mirelman A., Niewboer A. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database of Systematic Reviews. 2016; 12: CD010760. DOI: 10.1002/14651858.CD010760.pub2.

24. Garcia-Betances R.I., Waldmeyer M.T.A., Fico G., Cabrera-Umpierrez M.F. A succinct overview of virtual reality technology use in Alzheimer’s disease. Front. Aging Neurosci. 2015; 7: 80. DOI: 10.3389/fnagi.2015.00080.

25. Massetti T., Trevizan I.L., Arab C., Favero F.M., RibeiroPapa D.C., de Mello Monteiro C.B. Virtual reality in multiple sclerosis – a systematic review. Mult. Scler. Relat. Disord. 2016; 8: 107–112. DOI: 10.1016/j.msard.2016.05.014.

26. Teo W.P., Muthalib M., Yamin S., Hendy A., Bramstedt K., Kotsopoulos E., Perrey S., Ayaz H. Does a Combination of Virtual Reality, Neuromodulation and Neuroimaging Provide a Comprehensive Platform for Neurorehabilitation? A Narrative Review of the Literature. Front. Hum. Neurosci. 2016; 10: 284. DOI: 10.3389/fnhum.2016.00284. eCollection 2016.

27. Iamsakul K., Pavlovcik A.V., Calderon J.I., Sanderson L.M. Project heaven preoperative training in virtual reality. Surg. Neurol. Int. 2017; 8: 59. DOI: 10.4103/sni.sni_371_16.

28. Basso Moro S., Bisconti S., Muthalib M., Spezialetti M., Cutini S., Ferrari M., Placidi G., Quaresima V. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Neuroimage. 2014; 85: 451–460. DOI: 10.1016/j.neuroimage.2013.05.031.

29. Sharan D., Ajeesh P.S., Rameshkumar R., Mohandoss M., Rivas P. Virtual reality based therapy for post operative rehabilitation of children with cerebral palsy. Work. 2012; 41 (Suppl. 1): 3612–3615. DOI: 10.3233/WOR-2012-0667-3612.

30. Fehlings D., Switzer L., Findlay B., Knights S. Interactive computer play as “motor therapy” for individuals with cerebral palsy. Seminars in Pediatric Neurology. 2013; 20 (2): 127–138. DOI: 10.1016/j.spen.2013.06.003.

31. Moreira M.C., de Amorim Lima A.M., Ferraz K.M., Benedetti Rodrigues M.A. Use of virtual reality in gait recovery among post stroke patients – a systematic literature review. Disabil. Rehabil. Assist. Technol. 2013; 8 (5): 357–362. DOI: 10.3109/17483107.2012.749428.

32. Piggott L., Wagner S., Ziat M. Haptic neurorehabilitation and virtual reality for upper limb paralysis: a review. Crit. Rev. Biomed. Eng. 2016; 44 (1–2): 1–32. DOI: 10.1615/CritRevBiomedEng.2016016046.

33. Dimbwadyo-Terrer I., Gil-Agudo A., Segura-Fragoso A., de los Reyes-Guzmán A., Trincado-Alonso F., Piazza S., Polonio-López B. Effectiveness of the virtual reality system Toyra on upper limb function in people with tetraplegia: a pilot randomized clinical trial. Biomed. Res. Int. 2016; 2016 (6): 1–12. DOI: 10.1155/2016/6397828.

34. Parsons T.D. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front. Hum. Neurosci. 2015; 9: 660. DOI: 10.3389/fnhum.2015.00660.

35. Faria A.L., Andrade A., Soares L., Badia S.B. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. J. Neuroeng. Rehabil. 2016; 13 (1): 96. DOI: 10.1186/s12984-016-0204-z.

36. Yeh S.C., Huang M.C., Wang P.C., Fang T.Y., Su M.C., Tsai P.Y., Rizzo A. Machine learning-based assessment tool for imbalance and vestibular dysfunction with virtual reality rehabilitation system. Comput. Methods Programs Biomed. 2014; 16 (3): 311–318. DOI: 10.1016/j. cmpb.2014.04.014.

37. Pozeg P., Palluel E., Ronchi R., Solcà M., Al-Khodairy A.W., Jordan X., Kassouha A., Blanke O. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology. 2017; 89 (18): 1894–1903. DOI: 10.1212/WNL.0000000000004585.

38. Chen L., Lo W.L.A., Mao Y.R., Ding M.H., Lin Q., Li H., Zhao J.L., Xu Z.Q., Bian R.H., Huang D.F. Effect of Virtual reality on postural and balance control in patients with stroke: a systematic literature review. BioMed Research International. 2016; 2016: 8. DOI: 10.1155/2016/7309272.

39. Ravi D.K., Kumar N., Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy. 2017; 103 (3): 245–258. DOI: 10.1016/j.physio.2016.08.004.

40. Winkels D.G., Kottink A.I., Temmink R.A., Nijlant J.M.M., Buurke J.H. Wii-habilitation of upper extremity function in children with cerebral palsy. An explorative study. Developmental Neurorehabilitation. 2013; 16 (1): 44–51. DOI: 10.3109/17518423.2012.713401.

41. Chen Y., Fanchiang H.D., Howard A. Effectiveness of Virtual Reality in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Controlled Trails. Phys. Ther. 2018; 98 (1): 63–77. DOI: 10.1093/ptj/pzx107.

42. Matijevic V., Secic A., Masic V., Sunic M., Kolak Z., Znika M. Virtual reality in rehabilitation and therapy. Acta Clin. Croat. 2013; 52 (4): 453–457.

43. Robert M.T., Levin M.F. Validation of reaching in a virtual environment in typically developing children and children with mild unilateral cerebral palsy. Dev. Med. Child Neurol. 2018; 60 (4): 382–390. DOI: 10.1111/dmcn.13688.

44. Clutterbuck G., Auld M., Johnston L. Active Exercise Interventions Improve Gross Motor Function of Ambulant/Semi-Ambulant Children with Cerebral Palsy: a Systematic Review. Disabil. Rehabil. 2018; 5: 1–21. DOI: 10.1080/09638288.2017.1422035.

45. Howcroft J., Klejman S., Fehlings D., Wright F.V., Zabjek K., Andrysek J., Biddiss E. Active video game play in children with cerebral palsy: potential for physical activity promotion and rehabilitation therapies. Archives of Physical Medicine and Rehabilitation. 2012; 93 (8): 1448–1456. DOI: 10.1016/j.apmr.2012.02.033.

46. Ni L., Fehlings D., Biddiss E. Clinician and child assessment of virtual reality therapy games for motor rehabilitation of cerebral palsy. Archives of Physical Medicine and Rehabilitation. 2014; 95 (10): e105. DOI: 10.1016/j.apmr.2014.07.323.

47. Chen Y.P., Garcia-Vergara S., Howard A.M. Effect of a Home-Based Virtual Reality Intervention for Children with Cerebral Palsy Using Super Pop VR Evaluation Metrics: A Feasibility Study. Rehabil. Res. Pract. 2015; 2015: 812348. DOI: 10.1155/2015/812348.

48. Ni L.T., Fehlings D., Biddiss E. Design and evaluation of virtual reality-based therapy games with dual focus on therapeutic relevance and user experience for children with cerebral palsy. Games Health J. 2014; 3 (3): 162–171. DOI: 10.1089/g4h.2014.0003.

49. Ren K., Gong X.M., Zhang R., Chen X.H. Effects of virtual reality training on limb movement in children with spastic diplegia cerebral palsy. Chinese Journal of Contemporary Pediatrics. 2016; 18 (10): 975–979.

50. Bodimeade H., Whittingham K., Lloyd O., Boyd R.N. Executive Functioning in Children with Unilateral Cerebral Palsy: Cross- Sectional Study Protocol. BMJ Open. 2013; 3 (4): e002500. DOI: 10.1136/bmjopen-2012-002500.

51. Yoo J.W., Lee D.R., Cha Y.J., You S.H. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy. NeuroRehabilitation. 2017; 40 (2): 175–185. DOI: 10.3233/NRE-161402.

52. Acar G., Altun G.P., Yurdalan S., Polat M.G. Efficacy of neurodevelopmental treatment combined with the Nintendo(®) Wii in patients with cerebral palsy. J. Phys. Ther Sci. 2016; 28 (3): 774–780. DOI: 10.1589/jpts.28.774.

53. Do J.H., Yoo E.Y., Jung M.Y., Park H.Y. The effects of virtual reality-based bilateral arm training on hemiplegic children’s upper limb motor skills. NeuroRehabilitation. 2016; 38 (2): 115–127. DOI: 10.3233/NRE-161302.

54. Boyd R.N., Mitchell L.E., James S.T., Ziviani J., Sakzewski L., Smith A., Rose S., Cunnington R., Whittingham K., Ware R.S., Comans T.A., Scuffham P.A. Move it to improve it (Mitii): study protocol of a randomisedcontrolledtrialof a novel web-ba sedmultimodal training program for children and adolescents with cerebral palsy. BMJ Open. 2013; 3 (4): 1–21.

55. Rathinam C., Mohan V., Peirson J., Skinner J., Nethaji K.S., Kuhn I. Effectiveness of virtual reality in the treatment of hand function in children with cerebral palsy: a systematic review. J. Hand Ther. 2018; S0894-1130(17)30107-2. DOI: 10.1016/j.jht.2018.01.006.

56. Gagliardi C., Turconi A.C., Biffi E., Maghini C., Marelli A., Cesareo A., Diella E. Immersive Virtual Reality to Improve Walking Abilities in Cerebral Palsy: A Pilot Study. Ann. Biomed. Eng. 2018; 46 (9): 1376–1384. DOI: 10.1007/s10439-018-2039-1.

57. Booth A.T.C., Buizer A.I., Meyns P., Lansink I.O., Steenbrink F., van der Kroft M. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev. Med. Child. Neurol. 2018; 60 (9): 866–883. DOI: 10.1111/dmcn.13708.

58. Levac D., McCormick A., Levin M.F., Brien M., Mills R., Miller E., Sveistrup H. Active Video Gaming for Children with Cerebral Palsy: Does a Clinic-Based Virtual Reality Component Offer an Additive Benefit? A Pilot Study. Phys Occup. Ther. Pediatr. 2018; 38 (1): 74–87. DOI: 10.1080/01942638.2017.1287810.

59. Pavão S.L., Arnoni J.L., de Oliveira A.K., Rocha N.A. Impact of a Virtual rReality-Based Intervention on Motor Performance and Balance of a Child with Cerebral Palsy: a Case Study. Rev. Paul. Pediatr. 2014; 32 (4): 389–394. DOI: 10.1016/j.rpped.2014.04.005.

60. Hilderley A.J., Fehlings D., Lee G.W., Wright F.V. Comparison of a Robotic- Assisted Gait Training Program with a Program of Functional Gait Training for Children with Cerebral Palsy: Design and Methods of a Two Group Randomized Controlled Cross-Over Trial. Springerplus. 2016; 5 (1): 1886. DOI: 10.1186/s40064-016-3535-0.

61. Mendoza S.M., Gómez-Conesa A., Montesinos M.D.H. Association between Gross Motor Function and Postural Control in Sitting in Children with Cerebral Palsy: a Correlational Study in Spain. BMC Pediatr. 2015; 15: 124. DOI: 10.1186/s12887-015-0442-4.

62. Gatica-Rojas V., Cartes-Velásquez R., Guzmán-Muñoz E., Mendez-Redolledo G., Soto A., Pacheco A., Amigo C., Albornoz-Verdugo M., Elgueta-Cancino E.L. Effectiveness of a Nintendo Wii Balance Board Exercise Programme on Standing Balance of Children with Cerebral Palsy: A Randomised Clinical Trial Protocol. Contemp. Clin. Trials Commun. 2017; 6: 17–21. DOI: 10.1016/j.conctc.2017.02.008.

63. Mao Y., Chen P., Li L., Huang D. Virtual reality training improves balance function. Neural. Regen. Res. 2014; 9 (17): 1628–1634. DOI: 10.4103/1673-5374.141795.

64. Deutsch J.E., Borbely M., Filler J., Huhn K., Guarrera-Bowlby P. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Physical Therapy. 2008; 88 (10): 1196–1207. DOI: 10.2522/ptj.20080062.

65. Meyns P., Pans L., Plasmans K., Heyrman L., Desloovere K., Molenaers G. The Effect of Additional Virtual Reality Training on Balance in Children with Cerebral Palsy after Lower Limb Surgery: A Feasibility Study. Games Health J. 2017; 6 (1): 39–48. DOI: 10.1089/g4h.2016.0069.

66. Tarakci D., Ersoz Huseyinsinoglu B., Tarakci E., Razak Ozdincler A. Effects of Nintendo Wii-Fit® video games on balance in children with mild cerebral palsy. Pediatr. Int. 2016; 58 (10): 1042–1050. DOI: 10.1111/ped.12942.

67. Cano Porras D., Siemonsma P., Inzelberg R., Zeiling G., Plotnik M. Advantages of virtual reality in the rehabilitation of balance and gait: systematic review. Neurology. 2018; 90 (22): 1017–1025. DOI: 10.1212/WNL.0000000000005603.

68. Lazzari R.D., Politti F., Belina S.F., Santos C.A., Cimolin V. Effect of Transcranial Direct Current Stimulation Combined with Virtual Reality Training on Balance in Children with Cerebral Palsy: A Randomized, Controlled, Double-Blind, Clinical Trial. J. Mot. Behav. 2017; 49 (3): 329–336. DOI: 10.1080/00222895.2016.1204266.

69. Grondhuis S.N., Aman M.G. Overweight and obesity in youth with developmental disabilities: a call to action. J. Intellect. Disabil. Res. 2014; 58 (9): 787–799. DOI: 10.1111/jir.12090.

70. Mitchell L., Ziviani J., Oftedal S., Boyd R. The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Developmental Medicine and Child Neurology. 2012; 54 (7): 667–671.

71. Ainsworth B.E., Watson K.B., Ridley K., Pfeiffer K.A., Herrmann S.D., Crouter S.E., McMurray R.G., Butte N.F., Bassett D.R., Trost S.G., Berrigan D, Fulton J.E. Utility of the Youth Compendium of Physical Activities.Res. Q. Exerc. Sport.2018; 89 (3): 273–281. DOI: 10.1080/02701367.2018.1487754.

72. Ritterband-Rosenbaum A., Christensen M.S., Nielsen J.B. Twenty weeks of computer training improves sense of agency in children with spastic cerebral palsy. Res. Dev. Dis. 2012; 33 (4): 1227–1234.

73. Encarnação P., Alvarez L., Rios A., Maya C., Adams K., Cook A. Using virtual robot-mediated play activities to assess cognitive skills. Disabil. Rehabil. Assist. Technol. 2014; 9 (3): 231–241. DOI: 10.3109/17483107.2013.782577.

74. Pourazar M., Mirakhori F., Hemayattalab R., Bagherzadeh F. Use of Virtual Reality Intervention to Improve Reaction Time in Children with Cerebral Palsy: A Randomized Controlled Trial. Dev. Neurorehabil. 2017; 21 (8): 1–6: 515–520. DOI: 10.1080/17518423.2017.1368730.

75. Martín-Ruiz M.L., Máximo-Bocanegra N., Luna-Oliva L. A virtual environment to improve the detection of oral-facial malfunction in children with cerebral palsy. Sensors (Basel). 2016; 16 (4): 444. DOI: 10.3390/s16040444.

76. Shin J.W., Song G.B., Hwangbo G. Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Ther. Sci. 2015; 27 (7): 2151–2154. DOI: 10.1589/jpts.27.2151.

77. Meyer-Heim A., van Hedel H.J. Robot-assisted and computer-based neurorehabilitation for children: the story behind. Praxis. 2014; 103 (15): 883–892. DOI: 10.1024/1661-8157/a001725.

78. Stansfield S., Dennis C., Larin H., Gallagher C. Movement-based VR gameplay therapy for a child with cerebral palsy. Stud. Health Technol. Inform. 2015; 219: 153–157. DOI: 10.3233/978-1-61499-595-1-153.

79. Rosie J.A., Ruhen S., Hing W.A., Lewis G.N. Virtual rehabilitation in a school setting: is it feasible for children with cerebral palsy? Disabil. Rehabil. Assist. Technol. 2015; 10 (1): 19–26. DOI: 10.3109/17483107.2013.832414.

80. Owens S.G., Garner J.C. 3rd, Loftin J.M., van Blerk N., Ermin K. Changes in physical activity and fitness after 3 months of home Wii Fit™ use. J. Strength. Cond. Res. 2011; 25 (11): 3191–3197. DOI: 10.1519/JSC.0b013e3182132d55.

81. Levac D., Glegg S., Colquhoun H., Miller P., Noubary F. Virtual reality and active videogame-based practice, learning needs, and preferences: A Cross-Canada survey of physical therapists and occupational therapists. Games Health J. 2017; 6 (4): 217–228. DOI: 10.1089/g4h.2016.0089.


Для цитирования:


Карякин Н.Н., Шейко Г.Е., Воловик М.Г., Белова А.Н. Технологии виртуальной реальности в комплексной медицинской реабилитации пациентов с детским церебральным параличом. Бюллетень сибирской медицины. 2020;19(2):142-152. https://doi.org/10.20538/1682-0363-2020-2-142-152

For citation:


Karyakin N.N., Sheiko G.E., Volovik M.G., Belova A.N. Virtual reality technologies in complex medical rehabilitation of patients with cerebral palsy. Bulletin of Siberian Medicine. 2020;19(2):142-152. (In Russ.) https://doi.org/10.20538/1682-0363-2020-2-142-152

Просмотров: 66


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)