Preview

Бюллетень сибирской медицины

Расширенный поиск

Электроспиннинг для дизайна материалов медицинского назначения

https://doi.org/10.20538/1682-0363-2020-2-153-162

Полный текст:

Аннотация

Рассмотрены достижения в области получения скаффолдов для тканевой инженерии методом электроспиннинга. При правильном подборе параметров электроспиннинга, таких как вязкость раствора, тип растворителя, напряжение, расстояние от иглы до коллектора и т.д., можно получить материалы с высокой степенью пористости и необходимым размером пор, подходящим для оптимальной инфильтрации клеток. Данные тканеподобные материалы можно получать как из синтетических и природных полимеров, так и их смесей. Исходя из свойств, присущих конкретной ткани – сосудистой, костной, сердечной и т.д., подбираются материалы для синтеза скаффолда, обеспечивающие необходимые механические характеристики, структуру, скорость деградации и биосовместимость. Многие исследователи функционализировали волокна путем добавления биологически активных веществ или наночастиц. В обзоре также рассмотрены особенности внеклеточного матрикса различных видов тканей и подходы, которые применяются для имитации ткани в каждом конкретном случае. Заселение скаффолдов клетками перед трансплантацией является наиболее распространенным подходом для повышения биосовместимости скаффолда с тканями реципиента.

Об авторах

Е. И. Кретов
Национальный медицинский исследовательский центр (НМИЦ) им. акад. Е.Н. Мешалкина
Россия
канд. мед. наук, вед. науч. сотрудник, Центр интервенционной кардиологии

Россия, 630055, г. Новосибирск, ул. Речкуновская, 15



Е. Н. Заполоцкий
Национальный медицинский исследовательский центр (НМИЦ) им. акад. Е.Н. Мешалкина
Россия

канд. хим. наук, мл. науч. сотрудник

Россия, 630055, г. Новосибирск, ул. Речкуновская, 15



А. Р. Таркова
Национальный медицинский исследовательский центр (НМИЦ) им. акад. Е.Н. Мешалкина
Россия
канд. мед. наук, мл. науч. сотрудник

Россия, 630055, г. Новосибирск, ул. Речкуновская, 15



А. А. Прохорихин
Национальный медицинский исследовательский центр (НМИЦ) им. акад. Е.Н. Мешалкина
Россия
аспирант, Центр интервенционной кардиологии

Россия, 630055, г. Новосибирск, ул. Речкуновская, 15



А. А. Бойков
Национальный медицинский исследовательский центр (НМИЦ) им. акад. Е.Н. Мешалкина
Россия
аспирант, Центр интервенционной кардиологии

Россия, 630055, г. Новосибирск, ул. Речкуновская, 15



Д. У. Малаев
Национальный медицинский исследовательский центр (НМИЦ) им. акад. Е.Н. Мешалкина
Россия
аспирант, Центр интервенционной кардиологии

Россия, 630055, г. Новосибирск, ул. Речкуновская, 15



Список литературы

1. Chan B.P., Leong K.W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 2008; 17 (Suppl. 4): 467–479. DOI: 10.1007/s00586-008-0745-3.

2. Rustad K.C., Sorkin M., Levi B., Longaker M.T., Gurtner G.C. Strategies for organ level tissue engineering. Organogenesis. 2010; 6 (3): 151–157. DOI: 10.4161/org.6.3.12139.

3. Idaszek J., Kijenska E., Lojkowski M., Swieszkowski W. How important are scaffolds and their surface properties in regenerative medicine. Appl. Surf. Sci. 2016; 388 (Pt B): 762–774. DOI: 10.1016/j.apsusc.2016.03.038.

4. Попова И.В., Степанова А.О., Сергеевичев Д.С., Акулов А.Е., Захарова И.С., Покушалов Е.А., Лактионов П.П., Карпенко А.А. Сравнительное исследование трех типов протезов, изготовленных методом электроспиннинга в эксперименте in vitro и in vivo. Патология кровообращения и кардиохирургия. 2015; 19 (4): 63–71. DOI: 10.21688/1681-3472-2015-4-63-71.

5. O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011; 14 (3): 88–95. DOI: 10.1016/S1369-7021(11)70058-X.

6. Dhandayuthapani B., Yoshida Y., Maekawa T., Sakthi Kumar D. Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 2011; 2011. Article 290602. DOI: 10.1155/2011/290602.

7. Hutmacher D.W. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 2001; 12 (1): 107–124. DOI: 10.1163/156856201744489.

8. Lanza R., Langer R., Vacanti J.P. Principles of tissue engineering. New York: Academic Press; 2011.

9. Bhattacharyya P., Rutledge G. Electrospinning and polymer nanofibers: Process fundamentals. In: Comprehensive biomaterials: Vol. 1: Metallic, ceramic and polymeric biomaterials. P. Ducheyne (ed.). Netherlands: Elsevier; 2011: 497–512. DOI: 10.1016/B978-0-08-100691-7.00165-8.

10. Reneker D.H., Yarin A.L. Electrospinning jets and polymer nanofibers. Polymer. 2008; 49 (10): 2387–2425. DOI: 10.1016/j.polymer.2008.02.002.

11. Arras M.M., Grasl C., Bergmeister H., Schima H. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci. Technol. Adv. Mater. 2012; 13 (3): 035008. DOI: 10.1088/1468-6996/13/3/035008.

12. Díaz J.E., Fernández-Nieves A., Barrero A., Márquez M., Loscertales I.G. Fabrication of structured micro and nanofibers by coaxial electrospinning. Journal of Physics: Conference Series. 2008; 127 (1): 012008. DOI: 10.1088/1742-6596/127/1/012008.

13. Qin X. Coaxial electrospinning of nanofibers. In: Electrospun nanofibers. M. Afshari (ed.). Woodhead Publishing; 2017: 41–71. DOI: 10.1016/B978-0-08-100907-9.00003-9.

14. Suwantong O. Biomedical applications of electrospun polycaprolactone fiber mats. Polym. Adv. Technol. 2016; 27: 1264–1273. DOI: 10.1002/pat.3876.

15. Peng S., Jin G., Li L., Li K., Srinivasan M., Ramakrishna S., Chen J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev. 2016; 45 (5): 1225–1241. DOI: 10.1039/c5cs00777a.

16. Pham Q.P., Sharma U., Mikos A.G. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006; 12 (5): 1197–1211. DOI: 10.1089/ten.2006.12.1197.

17. Ramakrishna S. An introduction to electrospinning and nanofibers. Singapore: World Scientific Publishing; 2005. DOI: 10.1142/9789812567611_0003.

18. Pillay V., Dott С., Choonara Y.E., Tyagi C., Tomar L., Kumar P., du Toit L.C., Ndesendo V.M.K. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013; 2013. Article 789289. DOI: 10.1155/2013/789289.

19. Subbiah T., Bhat G.S., Tock R.W., Parameswaran S., Ramkumar S.S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005; 96 (2): 557–569. DOI: 10.1002/app.21481.

20. Megelski S., Stephens J.S., Chase D.B., Rabolt J.F. Microand nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 2002; 35 (22): 8456–8466. DOI: 10.1021/ma020444a.

21. Baptista A.C., Ferreira I., Borges J.P. Electrospun fibers in composite materials for medical applications. J. Composites Biodegradable Polymer. 2013; 1 (1): 56–65. DOI: 10.12974/2311-8717.2013.01.01.7.

22. Liao S., Chan C.K., Ramakrishna S. Electrospun nanofibers: Work for medicine? Front Mater. Sci. China. 2010; 4 (1): 29–33. DOI: 10.1007/s11706-010-0009-0.

23. Manea L.R., Hristian L., Leon A.L., Popa A. Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications. IOP Conf. Ser.: Mater Sci. Eng. 2016; 145: 032006. DOI: 10.1088/1757-899X/145/3/032006.

24. L’Heureux N., Dusserre N., Marini A., Garrido S., de la Fuente L., McAllister T. Technology insight: the evolution of tissue-engineered vascular grafts – from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 2007; 4 (7): 389–395. DOI: 10.1038/ncpcardio0930.

25. Rayatpisheh S., Heath D.E., Shakouri A., Rujitanaroj P.-O., Chew S.Y., Chan-Park M.B. Combining cell sheet technology and electrospun scaffolding for engineered tubular, aligned, and contractile blood vessels. Biomaterials. 2014; 35 (9): 2713–2719. DOI: 10.1016/j.biomaterials.2013.12.035.

26. Li Y., Huang G., Zhang X., Wang L., Du Y., Lu T.J., Xu F. Engineering cell alignment in vitro. Biotechnol. Adv. 2014; 32 (2): 347–365. DOI: 10.1016/j.biotechadv.2013.11.007.

27. He W., Ma Z., Teo W.E., Dong Y.X., Robless P.A., Lim T.C., Ramakrishna S., Tubular nanofiber scaffolds for tissue engineered small‐diameter vascular grafts. J. Biomed. Mater. Res. 2009; 90 (1): 205–216. DOI: 10.1002/jbm.a.32081.

28. Wise S.G., Byrom M.J., Waterhouse A., Bannon P.G., Weiss A.S., Ng M.K. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 2011; 7 (1): 295–303. DOI: 10.1016/j.actbio.2010.07.022.

29. Soletti L., Nieponice A., Hong Y., Ye S., Stankus J.J., Wagner W.R., Vorp D.A. In vivo performance of a phospholipid‐coated bioerodable elastomeric graft for small‐ diameter vascular applications. J. Biomed. Mater. Res. A. 2011; 96 (2): 436–448. DOI: 10.1002/jbm.a.32997.

30. Nieponice A., Soletti L., Guan J., Hong Y., Gharaibeh B., Maul T.M., Huard J., Wagner W.R., Vorp D.A. In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng. Part A. 2010; 16 (4): 1215–1223. DOI: 10.1089/ten.TEA.2009.0427.

31. He W., Nieponice A., Soletti L., Hong Y., Gharaibeh B., Crisan M., Usas A., Peault B., Huard J., Wagner W.R., Vorp D.A. Pericyte-based human tissue engineered vascular grafts. Biomaterials. 2010; 31: 8235–8244. DOI: 10.1016/j.biomaterials.2010.07.034.

32. Bergmeister H., Seyidova N., Schreiber C., Strobl M., Grasl C., Walter I., Messner B., Baudis S., Fröhlich S., Marchetti-Deschmann M., Griesser M., di Franco M., Krssak M., Liska R., Schima H. Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomater. 2015; 11: 104–113. DOI: 10.1016/j.actbio.2014.09.003.

33. Wu C., An Q., Li D., Jing W., He L., Chen H., Yu L., Wei Z., Mo X. A novel heparin loaded poly(l-lactide-co-caprolactone) covered stent for aneurysm therapy. Mater. Lett. 2014; 116: 39–42. DOI: 10.1016/j.matlet.2013.10.018.

34. Wang J., An Q., Li D., Wu T., Chen W., Sun B., El-Hamshary H., Al-Deyab S.S., Zhu W., Mo X. Heparin and vascular endothelial growth factor loaded poly(l-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment. J. Biomed. Nanotechnol. 2015; 11: 1947–1960. DOI: 10.1166/jbn.2015.2138.

35. Feng W., Liu P., Yin H., Gu Z., Wu Y., Zhu W., Liu Y., Zheng H., Mo X. Heparin and rosuvastatin calcium loaded ploy(l-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment. New J. Chem. 2017; 41: 9014–9023. DOI: 10.1039/c7nj01214d.

36. Chen X., Wang J., An Q.. Li D., Liu P., Zhu W., Mo X. Electrospun poly(l-lactic acid-co-ε-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Colloids Surf. B Biointerfaces. 2015; 128: 106–114. DOI: 10.1016/j.colsurfb.2015.02.023.

37. Yin A., Bowlin G.L., Luo R., Zhang X., Wang Y., Mo X. Electrospun silk fibroin/poly(l-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration. Regen. Biomater. 2016; 3: 239–245. DOI: 10.1093/rb/rbw026.

38. Kuznetsov K.A., Stepanova A.O., Kvon R.I., Douglas T.E.L., Kuznetsov N.A., Chernonosova V.S., Zaporozhchenko I.A., Kharkova M.V., Romanova I.V., Karpenko A.A., Laktionov P.P. Electrospun produced 3D matrices for covering of vascular stents: paclitaxel release depending on fiber structure and composition of the external environment. Materials. 2018; 115: 2176. DOI: 10.3390/ma11112176.

39. Sadri M., Arab-Sorkhi S., Vatani H., Bagheri-Pebdeni A. New wound dressing polymeric nanofiber containing geen tea extract prepared by electrospinning. Method. Fibers Polym. 2015; 16 (8): 1742–1750. DOI: 10.1007/s12221-015-5297-7.

40. Gizaw M., Thompson J., Faglie A., Lee S.-Yu., Neuenschwander P., Chou S.-F. Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering. 2018; 5 (1): e9. DOI: 10.3390/bioengineering5010009.

41. Zhong S.P., Zhang Y.Z., Lim C.T. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010; 2 (5): 510–525. DOI: 10.1002/wnan.100.

42. Sell S.A., Wolfe P.S., Garg K., McCool J.M., Rodriguez I.A., Bowlin G.L. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polym. 2010; 2 (4): 522–553. DOI: 10.3390/polym2040522.

43. Rho K.S., Jeong L., Lee G., Seo B.M., Park Y.J., Hong S.D., Roh S., Cho J.J., Park W.H., Min B.M. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006; 27 (8): 1452–1461. DOI: 10.1016/j.biomaterials.2005.08.004.

44. Vepari C., Kaplan D.L. Silk as a biomaterial. Prog. Polym. Sci. 2007; 32: 991–1007. DOI: 10.1016/j.progpolymsci.2007. 05.013.

45. Lee O.J., Ju H.W., Kim J.H., Lee J.M., Ki C.S., Kim J.H., Moon B.M., Park H.J., Sheikh F.A., Park C.H. Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix. J. Biomed. Nanotechnol. 2014; 10 (7): 1294–1303. DOI: 10.1166/jbn.2014.1818.

46. Gomes S.R., Rodrigues G., Martins G.G., Roberto M.A., Mafra M., Henriques C.M., Silva J.C. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: a comparative study. Mater. Sci. Eng. C. 2015; 46: 348–358. DOI: 10.1016/j.msec.2014.10.051.

47. Khil M.S., Cha D.I., Kim H.Y., Kim I.S., Bhattara N. Electrospun nanofibrous polyurethane membrane as wound dressing. J. Biomed. Mater. Res. Part B. Appl. Biomater. 2003; 67 (2): 675–679. DOI: 10.1002/jbm.b.10058.

48. El-Aassar M.R., El Fawal G.F., El-Deeb N.M., Hassan H.S., Mo X. Electrospun polyvinyl alcohol/ pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl. Biochem. Biotechnol. 2016; 178: 1488–1502. DOI: 10.1007/s12010-015-1962-y.

49. Lv F., Wang J., Xu P., Han Y., Ma H., Xu H., Chen S., Chang J., Ke Q., Liu M. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater. 2017; 60: 128–143. DOI: 10.1016/j.actbio.2017.07.020.

50. Bose S., Roy M., Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012; 30 (10): 546–554. DOI: 10.1016/j.tibtech.2012.07.005.

51. Jang J.H., Castano O., Kim H.W. Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Deliv. Rev. 2009; 61 (12): 1065–1083. DOI: 10.1016/j.addr.2009.07.008.

52. Shin M., Yoshimoto H., Vacanti J.P. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 2004; 10 (1–2): 33–41. DOI: 10.1089/107632704322791673.

53. Hench L.L. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 1991; 74 (7): 1485–1510. DOI: 10.1111/j.1151-2916.1991.tb07132.x.

54. Bonfield W. Composites for bone replacement. J. Biomed. Eng. 1988; 10 (6): 522–526. DOI: 10.1016/0141-5425(88)90110-0.

55. Ural E., Kesenci K., Fambri L., Migliaresi C., Piskin E. Poly(D,L-lactide/e-caprolactone)/hydroxyapatite composites as bone filler: Preparation and characterization. Biomaterials. 2000; 21: 2147–2154. DOI: 10.1016/S0142-9612(00)00098-3.

56. Kikuchi M., Koyama Y., Yamada T., Imamura Y., Okada T., Noriaki S., Akita K., Takakuda K., Junzo T. Development of guided bone regeneration membrane composed of b-tricalcium phosphate and poly(L-lactide-co-glycolide-co-e- caprolactone) composites. Biomaterials. 2004; 25 (28): 5979–5986. DOI: 10.1016/j.biomaterials.2004.02.001.

57. Song J.H., Kim H.E., Kim H.W. Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration. J. Mater. Sci. Mater. Med. 2008; 19 (8): 2925–2932. DOI: 10.1007/s10856-008-3420-7.

58. Li C., Vepari C., Jin H.-J., Kim H.J., Kaplan D.L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006; 27 (16): 3115–3124. DOI: 10.1016/j.biomaterials.2006.01.022.

59. Shimer A.L., Öner F.C., Vaccaro A.R. Spinal reconstruction and bone morphogenetic proteins: Open questions. Injury. 2009; 40: S32–38. DOI: 10.1016/s0020-1383(09)70009-9.

60. Suzuki Y., Tanihara M., Suzuki K., Saitou A., Sufan W., Nishimura Y. Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J. Biomed. Mater. Res. Part B. Appl. Biomater. 2015; 50: 405–409. DOI: 10.1002/(sici)1097-4636(20000605)50:3<405::aid-jbm15>3.0.co;2-z.

61. Weng L., Boda S.K., Wang H., Teusink M.J., Shuler F.D., Xie J. Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration. Adv. Healthc. Mater. 2018; 7: 1701415. DOI: 10.1002/adhm.201701415.

62. Ye K., Liu D., Kuang H., Cai J., Chen W., Sun B., Xia L., Fang B., Morsi Y., Mo X. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J. Colloid Interface Sci. 2019; 534: 625–636. DOI: 10.1016/j.jcis.2018.09.071.

63. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 2004; 84 (2): 649–698. DOI: 10.1152/physrev.00031.2003.

64. Sahoo S., Ouyang H., Goh J.C.-H., Tay T.E., Toh S.L. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng. 2006; 12 (1): 91–99. DOI: 10.1089/ten.2006.12.91.

65. Jawad H., Ali N., Lyon A., Chen Q., Harding S., Boccaccini A. Myocardial tissue engineering: a review. J. Tissue Eng. Regen. Med. 2007; 1 (5): 327–342. DOI: 10.1002/term.46.

66. Pavo N., Charwat S., Nyolczas N., Jakab A., Murlasits Z., Bergler-Klein J., Nikfardjam M., Benedek I., Benedek T., Pavo I.J., Gersh B.J., Huber K., Maurer G., Gyöngyösi M. Cell therapy for human ischemic heart diseases: critical review and summary of the clinical experiences. J. Mol. Cell Cardiol. 2014; 75: 12–24. DOI: 10.1016/j.yjmcc.2014.06.016.

67. Zong X., Bien H., Chung C.-Y., Yin L., Fang D., Hsiao B.S., Chu B., Entcheva E. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials. 2005; 26 (26): 5330–5338. DOI: 10.1016/j.biomaterials.2005.01.052.

68. Ravichandran R., Venugopal J.R., Sundarrajan S., Mukherjee S., Sridhar R., Ramakrishna S. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering. Int. J. Cardiol. 2013; 167 (4): 1461–1468. DOI: 10.1016/j.ijcard.2012.04.045.

69. Kharaziha M., Nikkhah M., Shin S., Annabi N., Masoumi N., Gaharwar A.K., Camci-Unal G., Khademhosseini A. PGS: Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials. 2013; 34: 6355–6366. DOI: 10.1016/j.biomaterials.2013.04.045.

70. Hsiao C., Bai M., Chang Y., Chung M., Lee T., Wu C., Maiti B., Liao Z.-X., Li R.-K., Sung H.-W. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials. 2013; 34: 1063–1072. DOI: 10.1016/j.biomaterials.2012.10.065.

71. Jana S., Tefft B., Spoon D., Simari R. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 2014; 10 (7): 2877–2893. DOI: 10.1016/j.actbio.2014.03.014.

72. Hong H., Dong N., Shi J., Chen S., Guo C., Hu P., Qi H. Fabrication of a novel hybrid heart valve leaflet for tissue engineering: an in vitro study. Artif. Organs. 2009; 33: 554–558. DOI: 10.1111/j.1525-1594.2009.00742.x.

73. Kluin J., Talacua H., Smits A.I.P.M., Emmert M.Y., Brugmans M.C.P., Fioretta E.S., Dijkman P.E., Söntjens S.H.M., Duijvelshoff R., Dekker S., Janssen-van den Broek M.W.J.T., Lintas V., Vink A., Hoerstrup S.P., Janssen H.M., Dankers P.Y.W., Baaijens F.P.T., Bouten C.V.C. In situ heart valve tissue engineering using a bioresorbable elastomeric implant – from material design to 12 months follow-up in sheep. Biomaterials. 2017 May; 125: 101–117. DOI: 10.1016/j.biomaterials.2017.02.007.

74. Bezuidenhout D., Williams D. F., Zilla P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials. 2015; 36: 6–25. DOI: 10.1016/j.biomaterials.2014.09.01


Для цитирования:


Кретов Е.И., Заполоцкий Е.Н., Таркова А.Р., Прохорихин А.А., Бойков А.А., Малаев Д.У. Электроспиннинг для дизайна материалов медицинского назначения. Бюллетень сибирской медицины. 2020;19(2):153-162. https://doi.org/10.20538/1682-0363-2020-2-153-162

For citation:


Kretov E.I., Zapolotsky E.N., Tarkova A.R., Prokhorikhin A.A., Boykov A.A., Malaev D.U. Electrospinning for the design of medical supplies. Bulletin of Siberian Medicine. 2020;19(2):153-162. (In Russ.) https://doi.org/10.20538/1682-0363-2020-2-153-162

Просмотров: 43


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)