Preview

Бюллетень сибирской медицины

Расширенный поиск

Разнообразие субпопуляций регуляторных Т-клеток

https://doi.org/10.20538/1682-0363-2020-3-144-155

Полный текст:

Аннотация

Регуляторные Т-лимфоциты являются центральными клетками системы иммунологической толерантности. В настоящее время описано существование множества различных субпопуляций регуляторных Т-клеток (Treg), однако большое количество вопросов, касающихся функционального назначения, путей дифференцировки и гомеостаза этих субпопуляций в организме, остаются неизученными. Продемонстрированные ранее пары хелперов и соответствующих им регуляторных Т-лимфоцитов требуют дальнейшего изучения их взаимодействий друг с другом. Актуальной темой является идентификация и установление функций клеток регуляторной памяти. Тканевая миграция активированных регуляторных Т-лимфоцитов также является перспективным направлением. В этом обзоре собраны и систематизированы данные о различных субпопуляциях регуляторных Т-лимфоцитов, выделены актуальные вопросы данной тематики, требующие дальнейшего изучения, а также затронуты пути развития области в клинической медицине.

Об авторах

С. В. Куприянов
Южно-Уральский государственный медицинский университет (ЮУГМУ)
Россия

лаборант, центральная научно-исследовательская лаборатория

Россия, 454092, г. Челябинск, ул. Воровского, 64



А. И. Синицкий
Южно-Уральский государственный медицинский университет (ЮУГМУ)
Россия

д-р мед. наук, доцент, зав. кафедрой биохимии имени Р.И. Лифшица

Россия, 454092, г. Челябинск, ул. Воровского, 64



И. И. Долгушин
Южно-Уральский государственный медицинский университет (ЮУГМУ)
Россия

д-р мед. наук, профессор, академик РАН, заслуженный деятель науки РФ

Россия, 454092, г. Челябинск, ул. Воровского, 64



Список литературы

1. Gordon J.R., Ma Y., Churchman L., Gordon S.A., Dawicki W. Regulatory dendritic cells for immunotherapy in immunologic diseases. Frontiers in Immunology. 2014; 5: 7. DOI: 10.3389/fimmu.2014.00007.

2. Abbas A.K., Lichtman A.H., Pillai S. Cellular and molecular immunology; 9th ed. 2018: 579.

3. Teh P.P., Vasanthakumar A., Kallies A. Development and function of effector regulatory T cells. Progress in molecular biology and translational science. Academic. Press. 2015; 136: 155–174. DOI: 10.1016/bs.pmbts.2015.08.005.

4. Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z., Nomura T., Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008; 322 (5899): 271–275. DOI: 10.1126/science.1160062.

5. Riella L.V., Paterson A.M., Sharpe A.H., Chandraker A. Role of the PD‐1 pathway in the immune response. American Journal of Transplantation. 2012; 12 (10): 2575–2587. DOI: 10.1111/j.1600-6143.2012.04224.x.

6. Wei X., Zhang J., Gu Q., Huang M., Zhang W., Guo J., Zhou X. Reciprocal expression of IL-35 and IL-10 defines two distinct effector Treg subsets that are required for maintenance of immune tolerance. Cell Reports. 2017; 21 (7): 1853–1869. DOI: 10.1016/j.celrep.2017.10.090.

7. Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance. Cell. 2008; 133 (5): 775–787. DOI: 10.1016/j.cell.2008.05.009.

8. Ohta A., Sitkovsky M. Extracellular adenosine- mediated modulation of regulatory T cells. Frontiers in Immunology. 2014; 5: 304. DOI: 10.3389/fimmu.2014.00304.

9. Northrup L., Christophera M.A., Sullivana B.P., Berkland C. Combining antigen and immunomodulators: Emerging trends in antigen-specific immunotherapy for autoimmunity. Advanced Drug Delivery Reviews. 2016; 98: 86–98. DOI: 10.1016/j.addr.2015.10.020.

10. Abbas A.K., Benoist C., Bluestone J.A., Campbell D.J., Ghosh S., Hori S., Jiang S., Kuchroo V.K., Mathis D., Roncarolo M.G., Rudensky A., Sakaguchi S., Shevach E.M., Vignali D.A.A., Ziegler S.F. Regulatory T cells: recommendations to simplify the nomenclature. Nature Immunology. 2013; 14 (4): 307. DOI: 10.1038/ni.2554.

11. Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A., Parizot C., Taflin C., Heike T., Valeyre D., Mathian A., Nakahata T., Yamaguchi T., Nomura T., Ono M., Amoura Z., Gorochov G., Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009; 30 (6): 899–911. DOI: 10.1016/j.immuni.2009.03.019.

12. Thornton A.M., Korty P.E., Tran D.Q., Wohlfert E.A., Murray P.E., Belkaid Y., Shevach E.M. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. The Journal of Immunology. 2010; 184 (7): 3433–3441. DOI: 10.4049/jimmunol.0904028.

13. Ferraro A., D’Alise A.M., Raj T., Asinovski N., Phillips R., Ergun A., Replogle J.M., Bernier A., Laffel L., Stranger B.E., De Jager P.L., Mathis D., Benoist C. Interindividual variation in human T regulatory cells. Proceedings of the National Academy of Sciences. 2014; 111 (12): 1111–1120. DOI: 10.1073/pnas.1401343111.

14. Ito T., Hanabuchi S., Wang Y.H., Park W.R., Arima K., Bover L., Qin F.F.X.F., Gilliet M., Liu Y.J. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity. 2008; 28 (6): 870–880. DOI: 10.1016/j.immuni.2008.03.018.

15. Fuhrman C.A., Yeh W.I., Seay H.R., Lakshmi P.S., Chopra G., Zhang L., Perry D.J., McClymont S.A., Yadav M., Lopez M.C., Baker H.V., Zhang Y., Li Y., Whitley M., Schack D., Atkinson M.A., Bluestone J.A., Brusko T.M. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. The Journal of Immunology. 2015; 195 (1): 145–155. DOI: 10.4049/jimmunol.1402381.

16. Duhen T., Duhen R., Lanzavecchia A., Sallusto F., Campbell D.J. Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood. 2012; 119 (19): 4430–4440. DOI: 10.1182/blood-2011-11-392324.

17. Collison L.W., Delgoffe G.M., Guy C.S., Vignali K.M., Chaturvedi V., Fairweather D., Satoskar A.R., Garcia K.C., Hunter C.A., Drake C.G., Murray P.J., Vignali D.A.A. The composition and signaling of the IL-35 receptor are unconventional. Nature Immunology. 2012; 13 (3): 290–299. DOI: 10.1038/ni.2227.

18. Farber D.L., Yudanin N.A., Restifo N.P. Human memory T cells: generation, compartmentalization and homeostasis. Nature Reviews Immunology. 2014; 14 (1): 24–35. DOI: 10.1038/nri3567.

19. Burzyn D., Kuswanto W., Kolodin D., Shadrach J.L., Cerletti M., Jang Y., Sefik E., Tan T.G., Wagers A.J., Benoist C., Mathis D. A special population of regulatory T cells potentiates muscle repair. Cell. 2013; 155 (6): 1282–1295. DOI: 10.1016/j.cell.2013.10.054.

20. Feuerer M., Herrero L., Cipolletta D., Naaz A., Wong J., Nayer A., Lee J., Goldfine A.B., Benoist C., Shoelson S., Mathis D. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine. 2009; 15 (8): 930–939. DOI: 10.1038/nm.2002.

21. Makita S., Kanai T., Nemoto Y., Totsuka T., Okamoto R., Tsuchiya K., Yamamoto M., Kiyono H., Watanabe M. Intestinal lamina propria retaining CD4+ CD25+ regulatory T cells is a suppressive site of intestinal inflammation. The Journal of Immunology. 2007; 178 (8): 4937–4946. DOI: 10.4049/jimmunol.178.8.4937.

22. Rosenblum M.D., Way S.S., Abbas A.K. Regulatory T cell memory. Nature Reviews Immunology. 2016; 16 (2): 90–101. DOI: 10.1038/nri.2015.1.

23. Sage P.T., Sharpe A.H. T follicular regulatory cells. Immunological Reviews. 2016; 271 (1): 246–259. DOI: 10.1111/imr.12411.

24. Wohlfert E.A., Grainger J.R., Bouladoux N., Konkel J.E., Oldenhove G., Ribeiro C.H., Ribeiro H., Hall J.A., Yagi R., Naik S., Bhairavabhotla R., Paul W.E., Bosselut R., Wei G., Zhao K., Oukka M., Zhu J., Belkaid Y. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. The Journal of Clinical Investigation. 2011; 121 (11): 4503–4515. DOI: 10.1172/JCI57456.

25. Linterman M.A., Pierson W., Lee S. K., Kallies A., Kawamoto S., Rayner T.F., Srivastava M., Divekar D.P., Beaton L., Hogan J.J., Fagarasan S., Liston A., Smith K.G.C., Vinuesa C.G. Foxp3+ follicular regulatory T cells control the germinal center response. Nature Medicine. 2011; 17 (8): 975–982. DOI: 10.1038/nm.2425.

26. Valmori D., Raffin C., Raimbaud I., Ayyoub M. Human RORgammat+ TH17 cells preferentially differentiate from naive FOXP3+Treg in the presence of lineage-specific polarizing factors. Proceedings of the National Academy of Sciences. 2010; 107 (45): 19402–19407. DOI: 10.1073/pnas.1008247107.

27. Dominguez-Villar M., Baecher-Allan C.M., Hafler D.A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nature Medicine. 2011; 17 (6): 673–675. DOI: 10.1038/nm.2389.

28. McClymont S.A., Putnam A.L., Lee M.R., Esensten J.H., Liu W., Hulme M.A., Hoffmüller U., Baron U., Olek S., Bluestone J.A., Brusko T.M. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. The Journal of Immunology. 2011; 186 (7): 3918–3926. DOI: 10.4049/jimmunol.1003099.

29. O’Connor Jr W., Kamanaka M., Booth C.J., Town T., Nakae S., Iwakura Y., Kolls J.K., Flavell R.A. A protective function for interleukin 17A in T cell–mediated intestinal inflammation. Nature Immunology. 2009; 10 (6): 603-609.

30. DOI: 10.1038/ni.1736.

31. Willenborg D.O., Fordham S., Bernard C.C., Cowden W.B., Ramshaw I.A. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. The Journal of Immunology. 1996; 157 (8): 3223–3227.

32. Root-Bernstein R, Fairweather D. Unresolved issues in theories of autoimmune disease using myocarditis as a framework. Journal of Theoretical Biology. 2014; 375: 101–123. DOI: 10.1016/j.jtbi.2014.11.022.

33. Sanchez A.M., Zhu J., Huang X., Yang Y. The development and function of memory regulatory T cells after acute viral infections. The Journal of Immunology. 2012; 189 (6): 2805–2814. DOI: 10.4049/jimmunol.1200645.

34. Brincks E.L., Roberts A.D., Cookenham T., Sell S., Kohlmeier J.E., Blackman M.A., Woodland D.L. Antigen- specific memory regulatory CD4+FOXP3+ T cells control memory responses to influenza virus infection. The Journal of Immunology. 2013; 190(7): 3438–3446. DOI: 10.4049/jimmunol.1203140.

35. Cotran R.S., Gimbrone M.A., Bevilacqua M.P., Mendrick D.L., Pober J.S. Induction and detection of a human endothelial activation antigen in vivo. Journal of Experimental Medicine. 1986; 164 (2): 661–666. DOI: 10.1084/jem.164.2.661.

36. Rosenblum M.D., Gratz I.K., Paw J.S., Lee K., Marshak-Rothstein A., Abbas A.K. Response to self- antigen imprints regulatory memory in tissues. Nature. 2011; 480(7378): 538–542. DOI: 10.1038/nature10664.

37. Hermiston M.L., Xu Z., Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annual Review of Immunology. 2003; 21 (1): 107–137. DOI: 10.1146/annurev.immunol.21.120601.140946.

38. Booth N.J., McQuaid A.J., Sobande T., Kissane S., Agius E., Jackson S.E., Salmon M., Falciani F., Yong K., Rustin M.H., Vukmanovic-Stejic M., Akbar A. N. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. The Journal of Immunology. 2010; 184 (8): 4317–4326. DOI: 10.4049/jimmunol.0903781.

39. Seddiki N., Santner-Nanan B., Tangye S.G., Alexander S.I., Solomon M., Lee S., Nanan R., Fazekas de Saint Groth B. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood. 2006; 107 (7): 2830–2838. DOI: 10.1182/blood-2005-06-2403.

40. Dong S., Maiella S., Xhaard A., Pang Y., Wenandy L., Larghero J., Becavin C., Benecke A., Bianchi E., Socié G., Rogge L. Multiparameter single-cell profiling of human CD4+ FOXP3+ regulatory T-cell populations in homeostatic conditions and during graft-versus-host disease. Blood. 2013; 122 (10): 1802–1812. DOI: 10.1182/blood-2013-02-482539.

41. Moriya N., Sanjoh K., Yokoyama S., Hayashi T. Mechanisms of HLA-DR antigen expression in phytohemagglutinin-activated T cells in man. Requirement of T cell recognition of self HLA-DR antigen expressed on the surface of monocytes. The Journal of Immunology. 1987; 139 (10): 3281–3286.

42. Schenkel J.M., Masopust D. Tissue-resident memory T cells. Immunity. 2014; 41 (6), 886–897. DOI: 10.1016/j.immuni.2014.12.007.

43. Rodriguez R.S., Pauli M.L., Neuhaus I.M., Siegrid S.Y., Arron S.T., Harris H.W., Yang S.H.Y., Anthony B.A., Sverdrup F.M., Krow-Lucal E., MacKenzie T.C., Johnson D.S., Meyer E.H., Löhr A., Hsu A., Koo J., Liao W., Gupta R., Debbaneh M.G., Butler D., Huynh M., Levin E.C., Leon A., Hoffman W.Y., McGrath M.H., Alvarado M.D., Ludwig C.H., Truong H.A., Maurano M.M., Gratz I.K., Abbas A.K., Rosenblum M.D., MacKenzie T. C. Memory regulatory T cells reside in human skin. The Journal of Clinical Investigation. 2014; 124 (3): 1027–1036. DOI: 10.1172/JCI72932.

44. Gratz I.K., Truong H.A., Yang S.H.Y., Maurano M.M., Lee K., Abbas A.K., Rosenblum, M.D. Cutting Edge: memory regulatory t cells require IL-7 and not IL-2 for their maintenance in peripheral tissues. The Journal of Immunology. 2013; 190 (9): 4483–4487. DOI: 10.4049/jimmunol.1300212.

45. Freitas A.A., Rocha B. Population biology of lymphocytes: the flight for survival. Annual Review of Immunology. 2000; 18 (1): 83–111. DOI: 10.1146/annurev.immunol.18.1.83.

46. Phillips B.E., Garciafigueroa Y., Engman C., Trucco M., Giannoukakis N. Tolerogenic dendritic cells and T- regulatory cells at the Clinical Trials Crossroad for the Treatment of Autoimmune Disease; Emphasis on Type 1 Diabetes Therapy. Frontiers in Immunology. 2019; 10: 148. DOI: 10.3389/fimmu.2019.00148.


Для цитирования:


Куприянов С.В., Синицкий А.И., Долгушин И.И. Разнообразие субпопуляций регуляторных Т-клеток. Бюллетень сибирской медицины. 2020;19(3):144-155. https://doi.org/10.20538/1682-0363-2020-3-144-155

For citation:


Kupriyanov S.V., Sinitsky A.I., Dolgushin I.I. Multiple subsets of regulatory T-cells. Bulletin of Siberian Medicine. 2020;19(3):144-155. https://doi.org/10.20538/1682-0363-2020-3-144-155

Просмотров: 71


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)