Preview

Бюллетень сибирской медицины

Расширенный поиск

Адипонектин и инсулин: молекулярные механизмы реализации метаболических нарушений

https://doi.org/10.20538/1682-0363-2020-3-188-197

Полный текст:

Аннотация

Адипонектин – самый распространенный адипоцитокин в плазме крови, который играет критическую метаболическую и противовоспалительную роль. При инсулинорезистентности, связанной с ожирением, происходит увеличение концентрации адипонектина, что приводит к активации сигнальных путей, участвующих в регуляции метаболизма. В настоящее время  адипонектин исследуется в качестве потенциальной терапевтической мишени для метаболического синдрома, хотя необходимы дополнительные исследования, чтобы понять основные механизмы, контролирующие уровень адипонектина в крови. В этом обзоре мы представим основные механизмы, контролирующие уровень адипонектина в сыворотке крови, и его роль в инсулин-сенсибилизирующем действии, а также оценим потенциальное использование адипонектина и его рецепторов в качестве потенциальной терапевтической мишени.

Об авторах

Е. Г. Учасова
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний (НИИ КПССЗ)
Россия

канд. мед. наук, ст. науч. сотрудник, лаборатория исследований гомеостаза, диагностика
сердечно-сосудистых заболеваний

Россия, 650002, г. Кемерово, Сосновый бул., 6

 



О. В. Груздева
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний (НИИ КПССЗ)
Россия

д-р мед. наук, зав. лабораторией исследований гомеостаза, отдел диагностики сердечно-сосудистых заболеваний

Россия, 650002, г. Кемерово, Сосновый бул., 6



Е. В. Белик
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний (НИИ КПССЗ)
Россия

мл. науч. сотрудник, лаборатория исследований гомеостаза отдел, диагностики сердечно-сосудистых заболеваний

Россия, 650002, г. Кемерово, Сосновый бул., 6



Ю. А. Дылева
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний (НИИ КПССЗ)
Россия

канд. мед. наук, ст. науч. сотрудник, лаборатория исследований гомеостаза отдел, диагностики сердечно-сосудистых заболеваний

Россия, 650002, г. Кемерово, Сосновый бул., 6



Список литературы

1. Maeda K. СDNA Cloning and expression of a novel adipose specific collagen-like factor, apM1 (dioseost Abundant Gene Transcript 1). Biochem. Biophys. Res. Commun. 2012; 425 (3): 556–559. DOI: 10.1016/j.bbrc. 2012.08.023.

2. Liu Y., Sweeney G., Adiponectin action in skeletal muscle. Best Pract. Res. Clin. Endocrinol. Metab. 2014; 28 (1): 33–41. DOI: 10.1016/j.beem.2013.08. 0034.

3. Crawford L.J.A., Peake R., Price S., Morris T.C.M., Irvine A.E. Adiponectin is produced by lymphocytes and is a negative regulator of granulopoiesis. J. Leukoc. Biol. 2010; 88 (4): 807–811. DOI: 10.1189/jlb.1109723.

4. Akingbemi B.T. Adiponectin receptors in energy homeostasis and obesity pathogenesis. Prog. Mol. Biol. Transl. Sci. 2013:114; 317–342. DOI: 10. 1016/B978-0-12-386933-3.00009-1.

5. Беспалова И.Д., Рязанцева Н.В., Калюжин В.В., Осихов И.А., Мурашев Б.Ю., Медянцев Ю.А., Рудницкий В.А. Гендерные особенности взаимосвязи гормональной активности жировой ткани и провоспалительного статуса при гипертонической болезни с метаболическим синдромом. Бюллетень сибирской медицины. 2014; 13 (5): 12–19. DOI: 10.20538/1682-0363-2014-5-12-19.

6. Wang Y., Lu G., Wong W.P.S., Vliegenthart J.F.G., Gerwig G.J., Lam K.S.L., Cooper G.J., Xu A. Proteomic and functional characterization of endogenous adiponectin purified from fetal bovine serum. Proteomics. 2004; 4 (12): 3933–3942. DOI: 10. 1002/pmic.200400826.

7. Wang Y., Lam K.S., Yau M.H., Xu. A. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem. J. 2008; 409 (3): 623–633. DOI: 10.1042/BJ20071492.

8. Waki H., Yamauchi T., Kamon J., Kita S., Ito Y., Hada Y., Uchida S., Tsuchida A., Takekawa S., Kadowaki T. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology. 2005; 146 (2): 790–796. DOI: 10.1210/en. 2004-1096.

9. Halberg N., Schraw T.D., Wang Z.V., Kim J.Y., Yi J., Hamilton M.P., Luby-Phelps K., Scherer P.E. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes. 2009; 58 (9): 1961–1970. DOI: 10.2337/db08-1750.

10. Pajvani U.B., Hawkins M., Combs T.P., Rajala M.W., Doebber T., Berger J.P., Wagner J.A., Wu M., Knopps A., Xiang A.H., Utzschneider K.M., Kahn S.E., Olefsky J.M., Buchanan T.A., Scherer P.E. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 2004; 279 (13): 12152–12162. DOI: 10.1074/jbc.M311113200.

11. Wang Y., A. Xu, C. Knight, L.Y. Xu, Cooper G.J.S. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. J. Biol. Chem. 2002; 277 (22): 19521–19529. DOI: 10.1074/jbc.M200601200.

12. Fruebis J., Tsao T.S., Javorschi S., Ebbets-Reed D., Erickson M.R.S., Yen F.T., Bihain B.E., Lodish H.F. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA. 2001; 98 (4): 2005–2010. DOI: 10.1073/pnas.98.4.2005.

13. Tsao T.S.S., Murrey H.E., Hug C., Lee D.H., Lodish H.F. Oligomerization statedependent activation of NF-κB signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J. Biol. Chem. 2002; 277 (33): 29359–29362. DOI: 10.1074/jbc.C200312200.

14. Tsao T.S., Tomas E., Murrey H.E., Hug C., Lee D.H., Ruderman N.B., Heuser J.E., Lodish H.F. Role of disulfide bonds in Acrp30/Adiponectin structure and signaling specificity: different oligomers activate different signal transduction pathways. J. Biol. Chem. 2003; 278 (50): 50810–50817. DOI: 10.1074/jbc.M309469200.

15. Hada Y., Yamauchi T., Waki H., Tsuchida A., Hara K., Yago H., Miyazaki O., Ebinuma H., Kadowaki T. Selective purification and characterization of adiponectin multimer species from human plasma. Biochem. Biophys. Res. Commun. 2007; 356 (2): 487–493. DOI: 10.1016/j.bbrc.2007.03.004.

16. Peake P.W., Kriketos A.D., Campbell L.V., Shen Y., Charlesworth J.A. The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals. Eur. J. Endocrinol. 2005; 153 (3): 409–417. DOI: 10.1530/eje.1.01978.

17. Pischon T., Hotamisligil G.S., Rimm E.B. Adiponectin: stability in plasma over 36 hours and within-person variation over 1 year. Clin. Chem. 2003; 49 (4): 650–652. DOI: 10.1373/49.4.650.

18. Tanabe H., Fujii Y., Okada-Iwabu M., Iwabu M., Nakamura Y., Hosaka T. Crystal structures of the human adiponectin receptors. Nature. 2015; 520 (7547): 312–316. DOI: 10.1038/nature14301.

19. Ruan H., Dong L.Q. Adiponectin signaling and function in insulin target tissues. J. Mol. Cell Biol. 2016; 8: 101–109. DOI: 10.1093/jmcb/mjw014.

20. Mao X., Kikani C.K., Riojas R.A., Langlais P., Wang L., Ramos F.J., Fang Q., Christ-Roberts C.Y., Hong J.Y., Kim R.Y., Liu F., Dong L.Q. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat. Cell Biol. 2006; 8 (5): 516–523. DOI: 10.1038/ncb1404.

21. Buechler C., Wanninger J., Neumeier M. Adiponectin receptor binding proteins – recent advances in elucidating adiponectin signalling pathways. FEBS Lett. 2010; 584 (20): 4280–4286. DOI: 10.1016/j.febslet.2010.09.035.

22. Deepa S.S., Zhou L., Ryu J., Wang C., Mao X., Li C., Zhang N., Musi N., DeFronzo R.A., Liu F., Dong L.Q. APPL1 mediates adiponectin-induced LKB1 cytosolic localization through the PP2A-PKCzeta signaling pathway. Mol. Endocrinol. 2011; 25 (10): 1773–1785. DOI: 10.1210/me. 2011-0082.

23. Gormand A., Henriksson E., Ström K., Jensen T.E., Sakamoto K., Göransson O., Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes. J. Cell. Biochem. 2011; 112: 1364–1375. DOI: 10.1002/jcb.23053.

24. Woods A., Dickerson K., Heath R., Hong S.P., Momcilovic M., Johnstone S.R., Carlson M. Carling D. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005; 2 (1): 21–33. DOI: 10.1016/j.cmet.2005.06.005.

25. Zhou L., Deepa S.S., Etzler J.C., Ryu J., Mao X., Fang Q., Liu D.D., Torres J.M., Jia W., Lechleiter J.D., Liu F., Dong L.Q. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase dependent pathways. J. Biol. Chem. 2009; 284 (33): 22426–22435. DOI: 10.1074/jbc.M109.028357.

26. Iwabu M., Yamauchi T., Okada-Iwabu M., Sato K., Nakagawa T., Funata M. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010; 464 (7393): 1313–1319. DOI: 10.1038/ nature08991.

27. Kahn B.B., Alquier T., Carling D., Hardie D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005; 1 (1): 15–25. DOI: 10.1016/j.cmet.2004.12.003

28. Ceddia R.B., Somwar R., Maida A., Fang X., Bikopoulos G., Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005; 48 (1): 132–139. DOI: 10.1007/s00125-004-1609-y.

29. Jørgensen S.B., Nielsen J.N., Birk J.B., Olsen G.S., Viollet B., Andreelli F., Schjerling P., Vaulont S., Hardie D.G., Hansen B.F., Richter E.A., Wojtaszewski J.F. The alpha2-5’AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes. 2004; 53 (12): 3074–3081. DOI: 10.2337/diabetes.53.12.3074.

30. Jäger S.S., Handschin C.C., St-Pierre J.J., Spiegelman B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA. 2007; 104 (29): 12017–12022. DOI: 10.1073/pnas. 0705070104.

31. Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature. 2005; 434 (7029): 113–118, DOI: 10.1038/nature03314.1.

32. Thorn S.L., Gollob M.H., Harper M.E., Beanlands R.S., Dekemp R.A., Dasilva J.N. Chronic AMPK activity dysregulation produces myocardial insulin resistance in the human Arg302Gln-PRKAG2 glycogen storage disease mouse model. EJNMMI Res. 2013; 3 (1): 48. DOI: 10.1186/2191-219X-3-48.

33. Stöckli J., Davey J.R, Hohnen-Behrens C., Xu A., James D.E., Ramm G. Regulation of glucose transporter 4 translocation by the Rab guanosine triphosphatase-activating protein AS160/TBC1D4: role of phosphorylation and membrane association. Mol. Endocrinol. 2008; 22 (12): 2703–2715. DOI: 10. 1210/me.2008-0111.

34. Wang C., Mao X., Wang L., Liu M., Wetzel M.D., Guan K.L. Dong L.Q., Liu F. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. J. Biol. Chem. 2007; 282 (11): 7991–7996. DOI: 10.1074/jbc.M700098200.

35. Combs T.P., Marliss E.B. Adiponectin signaling in the liver. Rev. Endocr. Metab. Disord. 2014; 15 (2): 137–147. DOI: 10.1007/s11154-013-9280-6.

36. Kim J., Kundu M., Viollet B., Guan K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011; 13 (2): 132–141. DOI: 10.1038/ncb2152.

37. Gamberi T., Modesti A., Magherini F., Souza D.M.D., Hawke T., Fiaschi T. Activation of autophagy by globular adiponectin is required for muscle differentiation. Biochim. Biophys. Acta. 2016; 1863 (4): 694–702. DOI:10.1016/j.bbamcr.2016.01.016.

38. Nollet M., Santucci-Darmanin S., Breuil V., Al-Sahlanee R., Cros C., Topi M., Momier D., Samson M., Pagnotta S., Cailleteau L., Battaglia S., Farlay D., Dacquin R., Barois N., Jurdic P., Boivin G., Heymann D., Lafont F., Lu S.S., Dempster D.W., Carle G.F., Pierrefite-Carle V. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy. 2014; 10 (11): 1965–1977. DOI:10.4161/auto.36182.

39. Xie M., Zhang D., Dyck J.R.B., Li Y., Zhang H., Morishima M., Mann D.L., Taffet GE., Baldini A., Khoury D.S., Schneider M.D. A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl. Acad. Sci USA. 2006; 103 (46): 17378–17383. DOI: 10.1073/pnas.0604708103.

40. Yan J., Gan L., Qi R., Sun C. Adiponectin decreases lipids deposition by p38 MAPK/ATF2 signaling pathway in muscle of broilers. Mol. Biol. Rep. 2013; 40 (12) 7017–7025. DOI: 10.1007/s11033-013-2821-y.

41. Yamauchi T., Nio Y., Maki T., Kobayashi M., Takazawa T., Iwabu M. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 2007; 13 (3): 332–339. DOI: 10.1038/nm1557.

42. Berg A.H., Combs T.P., Du X., Brownlee M., Scherer P.E. The adipocyte-secreted protein crp30 enhances hepatic insulin action. Nat. Med. 2001; 7 (8): 947–953. DOI: 10.1038/90992.

43. Yamauchi T., Kamon J., Waki H., Terauchi Y., Kubota N., Hara K. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001; 7 (8): 941–946. DOI: 10.1038/90984.

44. Yoon M.J., Lee G.Y., Chung J.J., Ahn Y.H., 44. Hong S.H., Kim J.B. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator- activated receptor α. Diabetes. 2006; 55 (9): 2562–2570. DOI: 10.2337/db05-1322.

45. Fu Y., Luo N., Klein R.L., Garvey W.T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid. Res. 2005; 46 (7): 1369–1379. DOI: 10.1194/jlr.M400373-JLR200.

46. Weyer C., Funahashi T., Tanaka S., Hotta K., Matsuzawa Y., Pratley R.E. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 2001; 86 (5): 1930–1935. DOI: 10.1210/jcem.86.5.7463.

47. Chang E, Choi J.M., Park S.E., Rhee E.J., Lee W.Y., Oh K.W., Park S.W., Park C.Y. Adiponectin deletion impairs insulin signaling in insulin-sensitive but not insulin-resistant 3T3-L1 adipocytes. Life Sci. 2015; 132: 93–100. DOI: 10.1016/j.lfs.2015.02.013.

48. Kern P.A., Di Gregorio G.B., Lu T., Rassouli N., Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003; 52 (7): 1779–1785. DOI: 10.2337/diabetes.52.7.1779.

49. Danielsson A., Ost A., Lystedt E., Kjolhede P., Gustavsson J., Nystrom F.H., Strålfors P. Insulin resistance in human adipocytes occurs downstream of IRS1 after surgical cell isolation but at the level of phosphorylation of IRS1 in type 2 diabetes. FEBS J. 2005; 272 (1): 141–151. DOI: 10.1111/j.1432-1033.2004.04396.x.

50. Pessin J.E., Saltiel A.R. Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest. 2000; 106 (2): 165–169. DOI: 10.1172/JCI10582.

51. Hammarstedt A., Graham T.E., Kahn B.B. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells. Diabetol. Metab. Syndr. 2012; 4 (1): 42. DOI: 10.1186/1758-5996-4-42.

52. Arbarash O., Gruzdeva O., Uchasova E., Belik E., Dyleva Y., Karetnikova V. Biochemical markers of type 2 diabetes as a late complication of myocardial infarction: a case-control study. Archives of Medical Science. 2017; 13 (2): 311–320. DOI: 10.5114/aoms.2017.65240.

53. Xin X., Zhou L., Reyes C.M., Liu F., Dong L.Q. APPL1mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway. Am. J. Physiol. Endocrinol. Metab. 2011; 300 (1): 103–110. DOI: 10.1152/ajpendo.00427.2010.

54. Yamauchi T., Kamon J., Ito Y., Tsuchida A., Yokomizo T., Kita S. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423 (6941): 762–769. DOI: 10.1038/nature01705.

55. Ghadge A.A., Harke S.M., Khadke S.P., Diwan A.G., Pankaj M., Kulkarni O.P., Ranjekar P.K., Kuvalekar A.A. Circulatory adipocytokines and lipid profile variations in type-2 diabetic subjects: desirable side-effects of antidiabetic drugs. Diabetes Metab. Syndr. 2014; 8 (4): 230–232. DOI: 10.1016/j.dsx.2014.09.010.

56. Wang Z.V., Scherer P.E. Adiponectin, cardiovascular function, and hypertension. Hypertension. 2008; 51 (1): 8–14. DOI: 10.1161/HYPERTENSIONAHA.107.099424.

57. Gruzdeva O., Uchasova E., Dyleva Y., Karetnikova V., Barbarash O., Akbasheva O. Early effects of treatment low-dose atorvastatin on markers of insulin resistance and inflammation in patients with myocardial infarction. Frontiers in Pharmacology. 2016; 7: 324. DOI: 10.3389/fphar.2016.00324.

58. Rasouli N., Yao-Borengasser A., Miles L.M., Elbein S.C., Kern P.A. Increased plasma adiponectin in response to pioglitazone does not result from increased gene expression. Am. J. Physiol. Endocrinol. Metab. 2006; 290: 42–46. DOI: 10.1152/ajpendo.00240.2005.

59. Lin W.S., Chang H.M., Tai T.Y., Chuang L.M. Effect of thiazolidinedione on gene expression in NIH3T3-L1 adipocytes (Abstract). Diabetes. 1999; 48 (1): 217.

60. Ghadge A.A., Khaire A.A., Kuvalekar A.A. Adiponectin: potential therapeutic target for metabolic syndrome. Cytokine Growth Factor Rev. 2018; 39: 151–158. DOI: 10.1016/j.cytogfr.2018.01.004.

61. Srivastava R.A.K., Pinkosky S.L., Filippov S., Hanselman J.C., Cramer C.T., Newton R.S. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases: thematic review series: new lipid and lipoprotein targets for the treatment of cardiometabolic diseases. J. Lipid. Res. 2012; 53 (12): 2490–2514. DOI: 10.1194/jlr.R025882.


Для цитирования:


Учасова Е.Г., Груздева О.В., Белик Е.В., Дылева Ю.А. Адипонектин и инсулин: молекулярные механизмы реализации метаболических нарушений. Бюллетень сибирской медицины. 2020;19(3):188-197. https://doi.org/10.20538/1682-0363-2020-3-188-197

For citation:


Uchasova E.G., Gruzdeva O.V., Belik E.V., Dyleva Yu.A. Adiponectin and insulin: molecular mechanisms of metabolic disorders. Bulletin of Siberian Medicine. 2020;19(3):188-197. https://doi.org/10.20538/1682-0363-2020-3-188-197

Просмотров: 100


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)