Preview

Бюллетень сибирской медицины

Расширенный поиск

Потенциальные биохимические маркеры хронического бронхита

https://doi.org/10.20538/1682-0363-2021-2-148-159

Полный текст:

Аннотация

 В обзоре систематизируются современные данные о биохимических маркерах, которые расширяют наше понимание о закономерностях развития хронического бронхита. В статье приведены маркеры, ассоциированные с патологией бронхолегочной системы: фактор некроза опухоли альфа; интерлейкин (ИЛ) 1, 6, 8, 10; тканевой фактор; ингибитор активатора плазминогена 1-го типа;  моноцитарнохемоаттрактантный протеин 1. Для каждой  представленной биомолекулы описаны ее свойства,  функции, непосредственная роль в организме, взаимосвязи с патологией бронхолегочной системы. Использование данных маркеров целесообразно для ранней диагностики,  контроля лечения и требует более глубокого изучения. 

Об авторах

Е. А. Куртуков
Научно-исследовательский институт терапии и профилактической медицины (НИИТПМ) – филиал Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук (ФИЦ ИЦиГ СО РАН)
Россия

 аспирант

Россия, 630089, г. Новосибирск, ул. Б. Богаткова, 175/1



Ю. И. Рагино
Научно-исследовательский институт терапии и профилактической медицины (НИИТПМ) – филиал Федерального исследовательского центра Институт цитологии и генетики Сибирского отделения Российской академии наук (ФИЦ ИЦиГ СО РАН)
Россия

 д-р мед. наук, профессор, чл.-корр. РАН, руководитель 

Россия, 630089, г. Новосибирск, ул. Б. Богаткова, 175/1



Список литературы

1. Kim V., Criner G.J. The chronic bronchitis phenotype in chronic obstructive pulmonary disease: Features and implications. Curr. Opin. Pulm. Med. 2015; 21 (2): 133–141. DOI: 10.1097/MCP.0000000000000145.

2. Burgel P.R., Nesme-Meyer P., Chanez P. et al. Cough and sputum production are associated with frequent exacerbations and hospitalizations in COPD subjects. Chest. 2009; 135 (4): 975–982. DOI: 10.1378/CHEST.08-2062.

3. De Oca M.M., Halbert R.J., Lopez M.V. et al. The chronic bronchitis phenotype in subjects with and without COPD: the PLATINO study. Eur. Respir. J. 2012; 40 (1): 28–36. DOI: 10.1183/09031936.00141611.

4. Martinez C.H., Kim V., Chen Y. et al. The clinical impact of non-obstructive chronic bronchitis in current and former smokers. Respir. Med. 2014; 108 (3): 491–499. DOI: 10.1016/J.RMED.2013.11.003.

5. Lahousse L., Seys L.J.M., Joos G.F., Franco O.H., Stricker B.H., Brusselle G.G. Epidemiology and impact of chronic bronchitis in chronic obstructive pulmonary disease. Eur. Respir. J. 2017; 50 (2): 1–4. DOI: 10.1183/13993003.02470-2016.

6. Lu M., Yao W., Zhong N. et al. Chronic obstructive pulmonary disease in the absence of chronic bronchitis in China. Respirology. 2010; 15 (7): 1072–1078. DOI: 10.1111/J.1440-1843.2010.01817.X.

7. Carbone M., Ly B., Dodson R., Pagano I., Morris P., Dogan U., Gazdar A., Pass H., Yang H. Malignant mesothelioma: facts, myths, and hypotheses. J. Cell Physiol. 2012; 227 (1): 44–58. DOI: 10.1002/jcp.22724.

8. Chu W.M. Tumor necrosis factor. Cancer Lett. 2013; 328 (2): 222–225. DOI: 10.1016/j.canlet.2012.10.014.

9. Swardfager W., Lanctôt K., Rothenburg L., Wong A., Cappell J., Herrmann H. A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry. 2010; 68 (10): 930–941. DOI: 10.1016/j.biopsych.2010.06.012.

10. Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E.K., Lanctôt K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry. 2010; 67 (5): 446–457. DOI: 10.1016/j.biopsych.2009.09.033.

11. Kim E.Y., Moudgil K.D. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine. 2017; 98: 87–96. DOI: 10.1016/j.cyto.2017.04.012.

12. Gan W.Q., Man S.P., Senthilselvan A. et al. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004; 59 (7): 547–580. DOI: 10.1136/thx.2003.019588.

13. Yang Y., Jing Z., Xin D., Wang S. Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther. Adv. Respir. Dis. 2019; 13: 1–4. DOI: 10.1177/1753466619866096.

14. Mosrane Y., Bougrida M., Alloui A.S., Martani M., Rouabah L. Systemic inflammatory profile of smokers with and without COPD. Rev. Pneumol. Clin. 2017; 73 (4): 188–198. DOI: 10.1016/j.pneumo.2017.07.003.

15. Jiang D.H., Wang X., Liu L.S. et al. The effect of ventilator mask atomization inhalation of ipratropium bromide and budesonide suspension liquid in the treatment of COPD in acute exacerbation period on circulating levels of inflammation and prognosis. Eur. Rev. Med. Pharmacol. Sci. 2017; 21 (22): 5211–5216. DOI: 10.26355/eurrev_201711_13843.

16. Boraschi D., Tagliabue A. The interleukin-1 receptor family. Semin. Immunol. 2013; 25 (6): 394– 407. DOI: 10.1016/j.smim.2013.10.023.

17. Rider P., Carmi Y., Guttman O., Braiman A., Cohen I., Voronov E., White M.R. et al. IL-1α and IL- 1β recruit different myeloid cells and promote different stages of sterile inflammation. J. Immunol. 2011; 187 (9): 4835–4843. DOI: 10.4049/jimmunol.1102048.

18. Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011; 117 (14): 3720–3732. DOI: 10.1182/blood-2010-07-273417.

19. Cosio M.G., Majo J., Cosio M.G. Inflammation of the airways and lung parenchyma in COPD: role of T cells. Chest. 2002; 121 (5): 160–165. DOI: 10.1378/chest.121.5_suppl.160s.

20. Pauwels N.S., Bracke K.R., Dupont L.L. et al. Role of IL-1alpha and the Nlrp3/caspase-1/IL-1beta axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur. Respir. J. 2011; 38 (5): 1019–1028. DOI: 10.1183/09031936.00158110.

21. Bafadhel M., McKenna S., Terry S. et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am. J. Respir. Crit. Care Med. 2011; 184 (6): 662–671. DOI: 10.1164/rccm.201104-0597OC.

22. Zou Y., Chen X., Liu J., Zhou D.B., Kuang X., Xiao J., Yu Q. et al. Serum IL-1β and IL-17 levels in patients with COPD: Associations with clinical parameters. Int. J. Chronic Obstr. Pulm. Dis. 2017; 12: 1247–1254. DOI: 10.2147/COPD.S131877.

23. Ozretić P., Filho P., Catalano C., Sokolović I., Vukić-Dugac A., Šutić M. Association of NLRP1 coding polymorphism with lung function and serum IL-1β concentration in patients diagnosed with chronic obstructive pulmonary disease (COPD). 2019; 10 (10): 783. DOI: 10.3390/genes10100783.

24. Fragoso J.M., Delgadillo H., Juárez-Cedillo T., Rodríguez-Pérez J.M., Vallejo M., Pérez-Méndez O. et al. The interleukin 6 -572 G>C (rs1800796) polymorphism is associated with the risk of developing acute coronary syndrome. Genet. Test Mol. Biomarkers. 2010; 14 (6): 759–763. DOI: 10.1089/gtmb.2010.0001.

25. Heinrich P.C., Behrmann I., Müller-Newen G., Schaper F., Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. The Biochemical Journal. 1998; 334 (2): 297–314. DOI: 10.1042/bj3340297.

26. Tanaka T., Narazaki M., Kishimoto T. Il-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014; 6 (10): 1–4. DOI: 10.1101/cshperspect.a016295.

27. Celli B.R., Locantore N., Yates J., Tal-Singer R., Miller B.E., Bakke P., Calverley P., Coxson H., Crim C. et al. ECLIPSE Investigators. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2012; 185 (10): 1065–1072. DOI: 10.1164/rccm.201110-1792OC

28. Donaldson et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005; 128 (4):1995–2004. DOI: 10.1378/chest.128.4.1995.

29. Garcia-Rio F., Miravitlles M., Soriano J.B., Munoz L., Duran-Tauleria E., Sanchez G., Sobradillo V., Ancochea J. Systemic inflammation in chronic obstructive pulmonary disease: a population-based study. Respiratory Research. 2010; 11 (1): 63–77. DOI: 10.1186/1465-9921-11-63.

30. Agusti A., Edwards L.D., Rennard S.I., MacNee W., Tal-Singer R., Miller B.E., Vestbo J. et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One. 2012; 7 (5): e37483. DOI: 10.1371/journal.pone.0037483.

31. Wei J., Xiong X., Lin Y., Zheng B., Cheng D. Association between serum interleukin-6 concentrations and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Peer J. 2015; 3: 1199. DOI: 10.7717/peerj.1199.

32. Sabit R., Bolton C.E., Edwards P.H., Pettit R.J., Evans W.D., McEniery C.M. et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2007; 175 (12): 1259–1265. DOI: 10.1164/rccm.200701-067OC.

33. Van Helvoort H.A., Heijdra Y.F., Thijs H.M., Vina J., Wanten G.J., Dekhuijzen P.N. Exercise-induced systemic effects in muscle-wasted patients with COPD. Medicine and Science in Sports and Exercise. 2006; 38 (9): 1543–1552. DOI: 10.1249/01.mss.0000228331.13123.53.

34. Zhang W., Chen H. The study on the interleukin-8. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2002; 19 (4): 697–702.

35. Hébert C.A., Baker J.B. Interleukin-8: a review. Cancer Invest. 1993; 11 (6): 743–750. DOI: 10.3109/07357909309046949.

36. De Boer W.I., Sont J.K., van Schadewijk A., Stolk J., van Krieken J.H., Hiemstra P.S. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J. Pathol. 2000; 190 (5): 619–626. DOI: 10.1002/(SICI)1096-9896(200004)190:5<619::AID-PATH555>3.0.CO;2-6.

37. Govindaraju V., Michoud M.C., Al-Chalabi M., Ferraro P., Powell W.S., Martin J.G. Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am. J. Physiol. Cell Physiol. 2006; 291 (5): 957–965. DOI: 10.1152/ajpcell.00451.2005.

38. Zhang J., Bai C. The significance of serum interleukin-8 in acute exacerbations of chronic obstructive pulmonary disease. Tanaffos. 2018; 17 (1): 13–21.

39. Samuel D., López-Vales R., Wee Yong V. Harmful and beneficial effects of inflammation after spinal cord injury: potential therapeutic implications. Handbook of Clinical Neurology. 2012; 109: 485–502. DOI: 10.1016/B978-0-444-52137-8.00030-9.

40. Hector R., Wong J.E., Nowak-Stephen W., de Oliveira C.F. Sepsis. Pediatric Critical Care. 2011; 4: 1413–1429. DOI: 10.1016/B978-0-323-07307-3.10103-X.

41. Pestka S., Krause C.D., Sarkar D., Walter M.R., Shi Y., Fisher P.B. Interleukin-10 and related cytokines and receptors. Ann. Rev. Immunol. 2004; 22: 929–979. DOI: 10.1146/annurev.immunol.22.012703.104622.

42. McGeachy M.J., Bak-Jensen K.S., Chen Y., Tato C.M., Blumenschein W., Cua D.J. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 2007; 8 (12): 1390–1397. DOI: 10.1038/ni1539.

43. Spits H., De Waal M.R. Functional characterization of human IL-10. Int. Arch. Allergy Immunol. 1992; 99 (1): 8–15. DOI: 10.1159/000236329.

44. Couper K.N., Blount D.G., Riley E.M. IL-10: The Master Regulator of Immunity to Infection. J. Immunol. 2008; 180 (9): 5771–5777. DOI: 10.4049/jimmunol.180.9.5771.

45. LeVan T.D., Romberger D.J., Siahpush M., Grimm B.L. Relationship of systemic IL-10 levels with proinflammatory cytokine responsiveness and lung function in agriculture workers. Respir. Res. 2018; 19 (1): 166. DOI: 10.1186/s12931-018-0875-z.

46. Zhang L., Cheng Z., Liu W., Wu K. Expression of interleukin (IL)-10, IL-17A and IL-22 in serum and sputum of stable chronic obstructive pulmonary disease patients. COPD. 2013; 10 (4): 459–465. DOI: 10.3109/15412555.2013.770456.

47. Takanashi S., Hasegawa Y., Kanehira Y., Yamamoto K., Fujimoto K., Satoh K., Okamura K. Interleukin-10 level in sputum is reduced in bronchial asthma, COPD and in smokers. Eur. Respir. J. 1999; 14 (2): 309–314. DOI: 10.1034/j.1399-3003.1999.14b12.x.

48. Moermans C., Heinen V., Nguyen M., Henket M., Sele J., Manise M., Corhay J.L., Louis R. Local and systemic cellular inflammation and cytokine release in chronic obstructive pulmonary disease. Cytokine. 2011; 56 (2): 298–304. DOI: 10.1016/j.cyto.2011.07.010.

49. Figueiredo C.A., Barreto M.L., Alcantara-Neves N.M., Rodrigues L.C., Cooper P.J., Cruz A.A. et al. Coassociations between IL10 polymorphisms, IL-10 production, helminth infection, and asthma/wheeze in an urban tropical population in Brazil. J. Allergy Clin. Immunol. 2013; 131 (6): 1683–1690. DOI: 10.1016/j.jaci.2012.10.043.

50. Bradford E., Jacobson S., Varasteh J., Comellas A.P., Woodruff P., O’Neal W., DeMeo D.L., Li X., Kim V., Cho M. et al. The value of blood cytokines and chemokines in assessing COPD. Respir. Res. 2017; 18 (1): 180. DOI: 10.1186/s12931-017-0662-2.

51. Demeo D.L., Campbell E.J., Barker A.F., Brantly M.L., Eden E., McElvaney N.G. et al. IL10 polymorphisms are associated with airflow obstruction in severe alpha1-antitrypsin deficiency. Am. J. Respir. Cell Mol. Biol. 2008; 38 (1): 114–120. DOI: 10.1165/rcmb.2007-0107OC.

52. Yoshimura T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally? Cellular & Molecular Iimmunology. 2018; 15 (4): 335–345. DOI: 10.1038/cmi.2017.135.

53. Batiushin M., Gadaborsheva K. Monocyte chemoattractant protein-1: its role in the development of tubulointerstitial fibrosis in nephropathies. Medical News of the North Caucasus. 2017; 2: 1–3.

54. Panee J. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine. 2012; 60 (1): 1–12. DOI: 10.1016/j.cyto.2012.06.018.

55. Dean R.A., Cox J.H., Bellac C.L., Doucet A., Starr A.E., Overall C.M. Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood. 2008; 112 (8): 3455–3464. DOI: 10.1182/blood-2007-12-129080.

56. Di Stefano A., Coccini T., Roda E., Signorini C., Balbi B., Brunetti G., Ceriana P. Blood MCP-1 levels are increased in chronic obstructive pulmonary disease patients with prevalent emphysema. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 1691–1700. DOI: 10.2147/COPD.S159915.

57. Traves S., Culpitt S., Russell R., Barnes P., Donnelly L. Increased levels of the chemokines GROα and MCP-1 in sputum samples from patients with COPD. Thorax. 2002; 57 (7): 590–595. DOI: 10.1136/thorax.57.7.590.

58. De Boer W.I., Sont J.K., van Schadewijk A., Stolk J., van Krieken H., Hiemstra P.S. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways in ammation in COPD. J. Pathol. 2000; 190 (5): 619–626. DOI:10.1002/(SICI)1096-9896(200004)190:5<619::AID-PATH555>3.0.CO;2-6.

59. Aldonyte R., Jansson L., Piitulainen E. Circulating monocytes from healthy individuals and COPD patients. Respir. Res. 2003; 4 (1): 11. DOI: 10.1186/1465-9921-4-11.

60. Mimuro J. Type 1 plasminogen activator inhibitor: its role in biological reactions. The Japanese Journal of Clinical Hematology. 1991; 32 (5): 487–489.

61. Борисова Е.П., Кылбанова Е.С., Асекритова А.С. Клинико-генетические особенности сочетания хронического бронхита и хронической обструктивной болезни легких с метаболическим синдромом у якутов. Вестник Северо-Восточного федерального университета им. М.К. Аммосова. 2014; 11 (4): 1.

62. Lijnen H.R. Pleiotropic functions of plasminogen activator inhibitor‐1. Journal of Trombosis and Hemostasis. 2005; 3 (1): 35–45. DOI: 10.1111/j.1538-7836.2004.00827.x.

63. Binder B.R., Christ G., Gruber F., Grubic N., Hufnagl P., Krebs M., Mihaly J., Prager G.W. Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News in Physiological Sciences. 2002; 17: 56–61. DOI: 10.1152/nips.01369.2001.

64. Berberoglu M., Evliyaoglu O., Adiyaman P. et al. Plasminogen activator inhibitor-1 (PAI-1) gene polymorphism (-675 4G/5G) associated with obesity and vascular risk in children. Pediatr. Endocrinol. Metab. 2006; 19 (5): 741–748. DOI: 10.1515/jpem.2006.19.5.741.

65. Khavinson V.Kh., Strekalov D.L., Lyshchev A.A. et al. Association analysis of some genetic risk factors for coronary heart disease with indicators of lipid metabolism and arterial pressure. Kliniko-laboratornyi konsilium. 2010; 4: 52–53.

66. Wang H., Yang T., Li D. et al. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 2369–2376. DOI: 10.2147 / COPD.S107409.

67. Essa E.S., Wahsh R.A. Association between plasminogen activator inhibitor-1-675 4G/5G insertion/deletion polymorphism and chronic obstructive pulmonary disease. COPD. 2016; 13 (6): 756–775. DOI: 10.3109/15412555.2016.1168392.

68. Waschki B., Watz H., Holz O., Magnussen H., Olejnicka B., Welte T., Rabe K.F., Janciauskiene S. Plasminogen activator inhibitor-1 is elevated in patients with COPD independent of metabolic and cardiovascular function. Int. J. Chron. Obstruct. Pulmon. Dis. 2017; 12: 981–987. DOI: 10.2147/COPD.S128689.

69. Muller Y.A., Ultsch M.H., de Vos A.M. The crystal structure of the extracellular domain of human tissue factor refined to 1.7. Journal of Molecular Biology. 1996; 256 (1): 144–459. DOI: 10.1006/jmbi.1996.0073.

70. Zhang E., Charles R., Tulinsky A. Structure of extracellular tissue factor complexed with factor VIIa inhibited with a BPTI mutant. Journal of Molecular Biology.1999; 285 (5): 2089–2104. DOI: 10.1006/jmbi.1998.2452.

71. Ruf W., Disse J., Carneiro-Lobo T.C., Yokota N., Schaffner F. Tissue factor and cell signalling in cancer progression and thrombosis. Journal of Thrombosis and Haemostasis. 2011; 9 (1): 306–315. DOI: 10.1111/j.1538-7836.2011.04318.x.

72. Szotowski B., Antoniak S., Poller W. et al. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ. Res. 2005; 96 (12): 1233–1239. DOI: 10.1161/01.RES.0000171805.24799.fa.

73. Davizon P., Lopez J.A. Microparticles and thrombotic disease. Curr Opin Hematol. 2009; 16(5): 334–341. DOI: 10.1097/MOH.0b013e32832ea49c.

74. Osterud B., Bjorklid E. Sources of tissue factor. Semin. Thromb. Hemost. 2006; 32 (1): 11–23. DOI: 10.1055/s-2006-933336.

75. Peshkova A.D., Le Minh G., Tutwiler V. et al. Activated monocytes enhance platelet-driven contraction of blood clots via tissue factor expression. Sci. Rep. 2017; 7 (1): 5149. DOI: 10.1038/s41598-017-05601-9.

76. Chiva-Blanch G., Laake K., Myhre P. et al. Platelet-, monocyte- derived and tissue factor- carrying circulating microparticles are related to acute myocardial infarction severity. PLoS One. 2017; 12 (2): 1–3. DOI: 10.1371/journal.pone.0172558.

77. Leatham E.W., Bath P.M., Tooze J.A. et al. Increased monocyte tissue factor expression in coronary disease. Br. Heart J. 1995; 73 (1): 10–13. DOI: 10.1136/hrt.73.1.10.

78. Shantsila E., Lip G.Y. The role of monocytes in thrombotic disorders. Insights from tissue factor, monocyte-platelet aggregates and novel mechanisms. Thromb. Haemost. 2009; 102(5): 916–924. DOI: 10.1160/TH09-01-0023

79. Brambilla M., Facchinetti L., Canzano P. et al. Human megakaryocytes confer tissue factor to a subset of shed platelets to stimulate thrombin generation. Thromb. Haemost. 2015; 114 (3): 579–592. DOI: 10.1160/TH14-10-0830

80. Darbousset R., Thomas G.M., Mezouar S. et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood. 2012; 120 (10): 2133–2143. DOI: 10.1182/blood-2012-06-437772

81. De Palma R., Cirillo P., Ciccarelli G. et al. Expression of functional tissue factor in activated T-lymphocytes in vitro and in vivo: A possible contribution of immunity to thrombosis? Int. J. Cardiol. 2016; 218: 188–195. DOI: 10.1016/j.ijcard.2016.04.177

82. Vaidyula V.R., Criner G.J., Grabianowski C., Rao A.K. Circulating tissue factor procoagulant activity is elevated in stable moderate to severe chronic obstructive pulmonary disease. Thromb. Res. 2009; 124 (3): 259–261 DOI: 10.1016/j.thromres.2008.12.030

83. Jankowski M., Undas A., Kaczmarek P., Butenas S. Activated factor XI and tissue factor in chronic obstructive pulmonary disease: links with inflammation and thrombin generation. Thromb. Res. 2011; 127(3): 242–246. DOI: 10.1016/j.thromres.2010.11.005.

84. Undas A., Jankowski M., Kaczmarek P., Sladek K., Brummel‐Ziedins K. Thrombin generation in chronic obstructive pulmonary disease: dependence on plasma factor composition. Thromb. Res. 2011; 128(4): 24–28. DOI: 10.1016/j.thromres.2011.05.004.

85. Szczypiorska A., Czajkowska-Malinowska M., Góralczyk B. Tissue factor and tissue factor pathway inhibitor in chronic obstructive pulmonary disease. Folia Medica Copernicana. 2015; 3 (1): 32–37.

86. Go A.S., Chertow G.M., Fan D. et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004; 351(13): 1296–1305. DOI: 10.1056/NEJMoa041031.

87. Дранник Г.Н., Майданник В.Г. Роль системы комплемента в физиологических и патологических реакциях организма. Врачебное дело. 1989; (4): 69–73.

88. Maidannyk V.G., Bohomolets A.A. The complement system and complement-mediated injury of kidney disease in children. International Journal of Рediatric, Obstetric and Gynecology. 2013; 49 (1): 119–134.

89. Holers V.M. Complement and its receptors: new insights into human disease. Annu. Re.v Immunol. 2014; 32: 433–459. DOI: 10.1146/annurev-immunol-032713-120154.

90. Abbas A.K., Lichtman A.H., Pillai S. Cellular and molecular. Immunology. 2010; 6: 272–288.

91. Serna M., Giles J.L., Morgan B.P., Bubeck D. Structural basis of complement membrane attack complex formation. Nature Communications Pediatric Hematology/Oncology and Immunopathology. 2016; 7: 10587. DOI: 10.1038/ncomms10587.

92. Héja D., Kocsis A., Dobó J., Szilágyi K., Szász R., Závodszky P., et al. Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. PNAS USA. 2012; 109(26): 10498–10503. DOI: 10.1073/pnas.1202588109.

93. Ferreira V.P., Pangburn M.K., Cortés C. Complement control protein factor H: The good, the bad, and the inadequate. Mol Immunol. 2010; 47 (13): 2187–2197. DOI: 10.1016/j.molimm.2010.05.007.

94. Strunk R.C., Eidlen D.M., Mason R.J. Pulmonary alveolar type ii epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J Clin. Invest. 1988; 81: 1419–1426. DOI: 10.1172/JCI113472.

95. Varsano S., Kaminsky M., Kaiser M., Rashkovsky L. Generation of complement c3 and expression of cell membrane complement inhibitory proteins by human bronchial epithelium cell line. Thorax. 2000; 55 (5): 364–369. DOI: 10.1136/thorax.55.5.364.

96. Volanakis J.E. Transcriptional regulation of complement genes. Annu Rev Immunol. 1995; 13: 277–305. DOI: 10.1146/annurev.iy.13.040195.001425.

97. Westwood J.P., Mackay A., Donaldson G., Machin S., Wedzicha J.A., Scully M. The role of complement activation in COPD exacerbation recovery. ERJ Open Res. 2016; 2 (4): 27. DOI: 10.1183/23120541.00027-2016.

98. Chauhan S., Gupta M.K., Goyal A., Dasgupta D.J. Alterations in immunoglobulin and complement levels in chronic obstructive pulmonary disease. Indian. J. Med. Res. 1990; 92: 241-245.

99. Mahesh M., Yalamudi M., Lokesh S. Complement levels in chronic obstructive pulmonary disease: correlation with pulmonary function and radiological emphysema score. International Journal of Scientific Study. 2016; 3 (12): 284.

100. Kew R.R., Ghebrehiwet B., Janoff A. Cigarette smoke can activate the alternative pathway of complement in vitro by modifying the third component of complement. J. Clin. Invest. 1985; 75 (3): 1000–1007. DOI: 10.1172/JCI111760.

101. Floreani A.A., Wyatt T.A., Stoner J., Sanderson S.D., Thompson E.G., Allen-Gipson D., Heires A.J. Smoke and c5a induce airway epithelial intercellular adhesion molecule-1 and cell adhesion. Am. J. Respir. Cell Mol. Biol. 2003; 29 (4): 472–448. DOI: 10.1165/rcmb.2002-0143OC

102. Grumelli S., Lu B., Peterson L., Maeno T., Gerard C. Cd46 protects against chronic obstructive pulmonary disease. PLoS ONE. 2011; 6 (5): 18785. DOI: 10.1371/journal.pone.0018785.


Для цитирования:


Куртуков Е.А., Рагино Ю.И. Потенциальные биохимические маркеры хронического бронхита. Бюллетень сибирской медицины. 2021;20(2):148-159. https://doi.org/10.20538/1682-0363-2021-2-148-159

For citation:


Kurtukov E.A., Ragino Yu.I. Potential biochemical markers of chronic bronchitis. Bulletin of Siberian Medicine. 2021;20(2):148-159. https://doi.org/10.20538/1682-0363-2021-2-148-159

Просмотров: 194


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)