Preview

Бюллетень сибирской медицины

Расширенный поиск

Потенциал использования микроРНК в судебно-медицинской экспертизе

https://doi.org/10.20538/1682-0363-2021-3-129-140

Полный текст:

Аннотация

Применение молекулярно-генетических подходов для идентификации тканей и биологических жидкостей организма, которые часто дают важную информацию для реконструкции потенциального преступления, является актуальной темой судебно-медицинских исследований. МикроРНК – это короткие, в среднем 18–22 нуклеотида, одноцепочечные некодирующие РНК, которые регулируют экспрессию генов на посттранскрипционном уровне путем связывания с 3’-нетранслируемой областью (3’-НТО) специфических мРНК-мишеней, что приводит к уменьшению экспрессии белка посредством блокады трансляции и (или) способствуя деградации мРНК-мишеней. МикроРНК участвуют практически во всех биологических процессах, включая клеточную пролиферацию, апоптоз и дифференцировку клеток. Через воздействие на гены-мишени микроРНК участвуют в регуляции многих патологических процессов. Кроме того, во многих биологических жидкостях организма человека, таких как кровь, были обнаружены многочисленные микроРНК, называемые циркулирующими микроРНК. Молекулярно-генетические подходы, несомненно, превосходят гистологические и иммунологические анализы в характеристике тканей, и микроРНК, благодаря характерной для них тканеспецифичности и стабильности в биологических жидкостях, несомненно, имеют потенциал в применении в судебно-медицинской практике и заслуживают внимания экспертов.

Об авторах

И. Ф. Гареев
Башкирский государственный медицинский университет (БГМУ)
Россия

 канд. мед. наук, науч. сотрудник, Центральная научно-исследовательская лаборатория 

 Россия, 450008, Республика Башкортостан, г. Уфа, ул. Ленина, 3 



О. А. Бейлерли
Башкирский государственный медицинский университет (БГМУ)
Россия

 науч. сотрудник, Центральная научно-исследовательская лаборатория 

 Россия, 450008, Республика Башкортостан, г. Уфа, ул. Ленина, 3 



А. А. Измайлов
Республиканский клинический онкологический диспансер
Россия

 д-р мед. наук, профессор, гл. врач

Россия, 450054, Республика Башкортостан, г. Уфа, пр. Октября, 73/1



Список литературы

1. Lu T.X., Rothenberg M.E. MicroRNA. Journal of Allergy and Clinical Immunology. 2018; 141 (4): 1202–1207. DOI: 10.1016/j.jaci.2017.08.034.

2. Van Meter E.N., Onyango J.A., Teske K.A. A review of currently identified small molecule modulators of microRNA function. European Journal of Medicinal Chemistry. 2019; 188: 112008. DOI: 10.1016/j.ejmech.2019.112008.

3. Vishnoi A., Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods in Molecular Biology. 2017; 1509: 1–10. DOI: 10.1007/978-1-4939-6524-3_1.

4. Valihrach L., Androvic P., Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Molecular Aspects of Medicine. 2019; 72: 100825. DOI: 10.1016/j.mam.2019.10.002

5. Sanz-Rubio D., Martin-Burriel I., Gil A., Cubero P., Forner M., Khalyfa A., Marin J.M. Stability of circulating exosomal miRNAs in healthy subjects. Scientific Reports. 2018; 8 (1): 10306. DOI: 10.1038/s41598-018-28748-5.

6. Matias-Garcia P.R., Wilson R., Mussack V., Reischl E., Waldenberger M., Gieger C., Anton G., Peters A., Kuehn-Steven A. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One. 2020; 15 (1): e0227648. DOI: 10.1371/journal.pone.0227648.

7. Ward Gahlawat A., Lenhardt J., Witte T., Keitel D., Kaufhold A., Maass K.K., Pajtler K.W., Sohn C., Schott S. Evaluation of storage tubes for combined analysis of circulating nucleic acids in liquid biopsies. International Journal of Molecular Sciences. 2019; 20 (3): 704. DOI: 10.3390/ijms20030704.

8. Desmond B.J., Dennett E.R., Danielson K.M. Circulating extracellular vesicle microRNA as diagnostic biomarkers in early colorectal cancer – a review. Cancers (Basel). 2019; 12 (1): 52. DOI: 10.3390/cancers12010052.

9. Lv Y., Tan J., Miao Y., Zhang Q. The role of microvesicles and its active molecules in regulating cellular biology. Journal of Cellular and Molecular Medicine. 2019; 23 (12): 7894–7904. DOI: 10.1111/jcmm.14667.

10. Fuji T., Umeda Y., Nyuya A., Taniguchi F., Kawai T., Yasui K., Toshima T., Yoshida K., Fujiwara T., Goel A., Nagasaka T. Detection of circulating microRNAs with Ago2 complexes to monitor the tumor dynamics of colorectal cancer patients during chemotherapy. International Journal of Cancer. 2019; 144 (9): 2169–2180. DOI: 10.1002/ijc.31960.

11. Silva S.S., Lopes C., Teixeira A.L., Carneiro de Sousa M.J., Medeiros R. Forensic miRNA: potential biomarker for body fluids? Forensic Science International: Genetics. 2015; 14: 1–10. DOI: 10.1016/j.fsigen.2014.09.002.

12. Hanson E.K., Lubenow H., Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Analytical Biochemistry. 2009; 387 (2): 303–314. DOI: 10.1016/j.ab.2009.01.037.

13. Courts C., Madea B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. Journal of Forensic Sciences. 2011; 56 (6): 1464–1470. DOI: 10.1111/j.1556-4029.2011.01894.x.

14. Wang Z., Zhang J., Luo H., Ye Y., Yan J., Hou Y. Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Science International: Genetics. 2013; 7 (1): 116–123. DOI: 10.1016/j.fsigen.2012.07.006.

15. Sauer E., Reinke A.K., Courts C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Science International: Genetics. 2016; 22: 89–99. DOI: 10.1016/j.fsigen.2016.01.018.

16. Wang Z., Zhang J., Wei W., Zhou D., Luo H., Chen X., Hou Y. Identification of saliva using microRNA biomarkers for forensic purpose. Journal of Forensic Sciences. 2015; 60 (3): 702–706. DOI: 10.1111/1556-4029.12730.

17. Sirker M., Fimmers R., Schneider P.M., Gomes I. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Science International: Genetics. 2017; 27: 41–49. DOI: 10.1016/j.fsigen.2016.11.012.

18. O,Leary K.R., Glynn C.L. Investigating the isolation and amplification of microRNAs for forensic body fluid identification. Microrna. 2018; 7 (3): 187–194. DOI: 10.2174/2211536607666180430153821.

19. Lewis C.A., Layne T.R., Seashols-Williams S.J. Detection of microRNAs in DNA extractions for forensic biological source identification. Journal of Forensic Sciences. 2019; 64 (6): 1823–1830. DOI: 10.1111/1556-4029.14070.

20. Fujimoto S., Manabe S., Morimoto C., Ozeki M., Hamano Y., Hirai E., Kotani H., Tamaki K. Distinct spectrum of microRNA expression in forensically relevant body fluids and probabilistic discriminant approach. Scientific Reports. 2019; 9 (1): 14332. DOI: 10.1038/s41598-019-50796-8.

21. Sehgal A., Chen Q., Gibbings D., Sah D.W., Bumcrot D. Tissue-specific gene silencing monitored in circulating RNA. RNA. 2014; 20 (2): 143–149. DOI: 10.1261/rna.042507.113.

22. Thomou T., Mori M.A., Dreyfuss J.M., Konishi M., Sakaguchi M., Wolfrum C., Rao T.N., Winnay J.N., Garcia-Martin R., Grinspoon S.K., Gorden P., Kahn C.R. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017; 542 (7642): 450–455. DOI: 10.1038/nature21365.

23. Siracusa J., Koulmann N., Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine. Journal Cachexia Sarcopenia Muscle. 2018; 9 (1): 20–27. DOI: 10.1002/jcsm.12227.

24. Sun Y., Koo S., White N., Peralta E., Esau C., Dean N.M., Perera R.J. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Research. 2004; 32 (22): e188. DOI: 10.1093/nar/gnh186.

25. Chandrasekaran K., Karolina D.S., Sepramaniam S., Armugam A., Wintour E.M., Bertram J.F., Jeyaseelan K. Role of microRNAs in kidney homeostasis and disease. Kidney International. 2012; 81 (7): 617–627. DOI: 10.1038/ki.2011.448.

26. Sun Y., Luo Z.M., Guo X.M., Su D.F., Liu X. An updated role of microRNA-124 in central nervous system disorders: a review. Frontiers in Cellular Neuroscience. 2015; 9: 193. DOI: 10.3389/fncel.2015.00193.

27. McSweeney K.M., Gussow A.B., Bradrick S.S., Dugger S.A., Gelfman S., Wang Q., Petrovski S., Frankel W.N., Boland M.J., Goldstein D.B. Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks. Genome Research. 2016; 26 (10): 1411–1416. DOI: 10.1101/gr.199828.115.

28. Wang K., Yuan Y., Cho J.H., McClarty S., Baxter D., Galas D.J. Comparing the microRNA spectrum between serum and plasma. PLoS One. 2012; 7 (7): e41561. DOI: 10.1371/journal.pone.0041561.

29. Ludwig N., Leidinger P., Becker K., Backes C., Fehlmann T., Pallasch C., Rheinheimer S., Meder B., Stähler C., Meese E., Keller A. Distribution of miRNA expression across human tissues. Nucleic Acids Research. 2016; 44 (8): 3865–3877. DOI: 10.1093/nar/gkw116.

30. Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. The microRNA spectrum in 12 body fluids. Clinical Chemistry. 2010; 56 (11): 1733–1741. DOI: 10.1373/clinchem.2010.147405.

31. Stojkovic S., Koller L., Sulzgruber P., Hülsmann M., Huber K., Mayr M., Hengstenberg C., Wojta J., Niessner A. Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. International Journal of Cardiology. 2020; 303: 80–85. DOI: 10.1016/J.IJCARD.2019.11.090.

32. Ponsuksili S., Trakooljul N., Hadlich F., Haack F., Murani E., Wimmers K. Genetic architecture and regulatory impact on hepatic microRNA expression linked to immune and metabolic traits. Open Biology. 2017; 7 (11): 170101. DOI: 10.1098/rsob.170101.

33. Sauer E., Extra A., Cachée P., Courts C. Identification of organ tissue types and skin from forensic samples by microRNA expression analysis. Forensic Science International: Genetics. 2017; 28: 99–110. DOI: 10.1016/j.fsigen.2017.02.002.

34. Sirker M., Fimmers R., Schneider P.M., Gomes I. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Science International: Genetics. 2017; 27: 41–49. DOI: 10.1016/j.fsigen.2016.11.012.

35. Van Solingen C., Bijkerk R., de Boer H.C., Rabelink T.J., van Zonneveld A.J. The role of microRNA-126 in vascular homeostasis. Current Vascular Pharmacology. 2015; 13 (3): 341–351. DOI: 10.2174/15701611113119990017.

36. Gareev I., Yang G., Sun J., Beylerli O., Chen X., Zhang D., Zhao B., Zhang R., Sun Z., Yang Q., Li L., Pavlov V., Safin S., Zhao S. Circulating microRNAs as potential noninvasive biomarkers of spontaneous intracerebral hemorrhage. World Neurosurgery. 2020; 133: e369–e375. DOI: 10.1016/j.wneu.2019.09.016.

37. Гареев И.Ф., Бейлерли О.А. Циркулирующие микроРНК как биомаркеры: какие перспективы? Профилактическая медицина. 2018; 21 (6): 142–150. DOI: 10.17116/profmed201821061142.

38. Taghizadeh M., Ahmadizad S., Naderi M. Effects of endurance training on hsa-miR-223, P2RY12 receptor expression and platelet function in type 2 diabetic patients. Clinical Hemorheology and Microcirculation. 2018; 68 (4): 391–399. DOI: 10.3233/CH-170300.

39. Corraliza-Gomez M., Sanchez D., Ganfornina M.D. Lipid-binding proteins in brain health and disease. Frontiers in Neurology. 2019; 10: 1152. DOI: 10.3389/fneur.2019.01152.

40. Sessa F., Maglietta F., Bertozzi G., Salerno M., Di Mizio G., Messina G., Montana A., Ricci P., Pomara C. Human Brain Injury and miRNAs: An Experimental Study. International Journal of Molecular Sciences. 2019; 20 (7): 1546. DOI: 10.3390/ijms20071546.

41. Lux C., Schyma C., Madea B., Courts C. Identification of gunshots to the head by detection of RNA in backspatter primarily expressed in brain tissue. Forensic Science International. 2014; 237: 62–69. DOI: 10.1016/j.forsciint.2014.01.016.

42. Menathung P., Saengkaeotrakul P., Rasmeepaisarn K., Vongpaisarnsin K. Circulatory microrna in acute myocardial infarction: A candidate biomarker for forensic investigation. Forensic Science International: Genetics Supplement Series. 2017; 6: e294–e295. DOI: 10.1016/j.fsigss.2017.09.136.

43. Li N., Zhou H., Tang Q. miR-133: A suppressor of cardiac remodeling? Frontiers in Pharmacology. 2018; 9: 903. DOI: 10.3389/fphar.2018.00903.

44. Corsten M.F., Dennert R., Jochems S., Kuznetsova T., Devaux Y., Hofstra L., Wagner D.R., Staessen J.A., Heymans S., Schroen B. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circulation: Cardiovascular Genetics. 2010; 3 (6): 499–506. DOI: 10.1161/CIRCGENETICS.110.957415.

45. Chen X., Zhang L., Su T., Li H., Huang Q., Wu D., Yang C., Han Z. Kinetics of plasma microRNA-499 expression in acute myocardial infarction. Journal of Thoracic Disease. 2015; 7 (5): 890–896. DOI: 10.3978/j.issn.2072-1439.2014.11.32.

46. Gomes A., da Silva I.V., Rodrigues C.M.P., Castro R.E., Soveral G. The emerging role of microRNAs in aquaporin regulation. Frontiers in Chemistry. 2018; 6: 238. DOI: 10.3389/fchem.2018.00238.

47. Yu S., Na J.Y., Lee Y.J., Kim K.T., Park J.T., Kim H.S. Forensic application of microRNA-706 as a biomarker for drowning pattern identification. Forensic Science International. 2015; 255: 96–101. DOI: 10.1016/j.forsciint.2015.06.011.

48. Luo P., He G., Liu D. HCN channels: new targets for the design of an antidepressant with rapid effects. Journal of Affective Disorders. 2019; 245: 764–770. DOI: 10.1016/j.jad.2018.11.081.

49. Capizzi A., Woo J., Verduzco-Gutierrez M. Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Medical Clinics of North America. 2020; 104 (2): 213–238. DOI: 10.1016/j.mcna.2019.11.001.

50. Sun T.Y., Chen X.R., Liu Z.L., Zhao L.L., Jiang Y.X., Qu G.Q., Wang R.S., Huang S.Z., Liu L. Expression profiling of microRNAs in hippocampus of rats following traumatic brain injury. Journal of Huazhong University of Science and Technology (Medical Sciences). 2014; 34 (4): 548–553. DOI: 10.1007/s11596-014-1313-1.

51. Martinez B., Peplow P.V. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury. Neural Regeneration Research. 2017; 12 (11): 1749–1761. DOI: 10.4103/1673-5374.219025.

52. Inzani E., Marshall H.H., Thompson F.J., Kalema-Zikusoka G., Cant M.A., Vitikainen E.I.K. Spontaneous abortion as a response to reproductive conflict in the banded mongoose. Biology Letters. 2019; 15 (12): 20190529. DOI: 10.1098/rsbl.2019.0529.

53. Barchitta M., Maugeri A., Quattrocchi A., Agrifoglio O., Agodi A. The Role of miRNAs as biomarkers for pregnancy outcomes: a comprehensive review. International Journal of Genomics. 2017; 2017: 8067972. DOI: 10.1155/2017/8067972.

54. Chen H., Cheng S., Liu C., Fu J., Huang W. bioinformatics analysis of differentially expressed genes, methylated genes, and mirnas in unexplained recurrent spontaneous abortion. Journal of Computational Biology. 2019; 26 (12): 1418–1426. DOI: 10.1089/cmb.2019.0158.

55. Noren Hooten N., Abdelmohsen K., Gorospe M., Ejiogu N., Zonderman A.B., Evans M.K. microRNA expression patterns reveal differential expression of target genes with age. PLoS One. 2010; 5 (5): e10724. DOI: 10.1371/journal.pone.0010724.

56. Tu C., Du T., Ye X., Shao C., Xie J., Shen Y. Using miRNAs and circRNAs to estimate PMI in advanced stage. Legal Medicine (Tokyo). 2019; 38: 51–57. DOI: 10.1016/j.legalmed.2019.04.002.

57. Ivanova E., Bozhilova R., Kaneva R., Milanova V. The dysregulation of microRNAs and the role of stress in the pathogenesis of mental disorders. Current Topics in Medicinal Chemistry. 2018; 18 (21): 1893–1907. DOI: 10.2174/1568026619666181130135253.

58. Cao T., Zhen X.C. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neuroscience & Therapeutics. 2018; 24 (7): 586–597. DOI: 10.1111/cns.12840.

59. Santarelli D.M., Carroll A.P., Cairns H.M., Tooney P.A., Cairns M.J. Schizophrenia-associated microRNA-gene interactions in the dorsolateral prefrontal cortex. Genomics Proteomics Bioinformatics. 2019; 17 (6): 623–634. DOI: 10.1016/j.gpb.2019.10.003.

60. Ma J., Shang S., Wang J., Zhang T., Nie F., Song X., Zhao H., Zhu C., Zhang R., Hao D. Identification of miR-22-3p, miR-92a-3p, and miR-137 in peripheral blood as biomarker for schizophrenia. Psychiatry Research. 2018; 265: 70–76. DOI: 10.1016/j.psychres.2018.03.080.

61. He K., Guo C., Guo M., Tong S., Zhang Q., Sun H., He L., Shi Y. Identification of serum microRNAs as diagnostic biomarkers for schizophrenia. Hereditas. 2019; 156: 23. DOI: 10.1186/s41065-019-0099-3.

62. Liu S., Zhang F., Shugart Y.Y., Yang L., Li X., Liu Z., Sun N., Yang C., Guo X., Shi J., Wang L., Cheng L., Zhang K., Yang T., Xu Y. The early growth response protein 1-miR-30a-5pneurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Translational Psychiatry. 2017; 7 (1): e998. DOI: 10.1038/tp.2016.268.

63. Zhao Z., Jinde S., Koike S., Tada M., Satomura Y., Yoshikawa A., Nishimura Y., Takizawa R., Kinoshita A., Sakakibara E., Sakurada H., Yamagishi M., Nishimura F., Inai A., Nishioka M., Eriguchi Y., Araki T., Takaya A., Kan C., Umeda M., Shimazu A., Hashimoto H., Bundo M., Iwamoto K., Kakiuchi C., Kasai K. Altered expression of microRNA-223 in the plasma of patients with first-episode schizophrenia and its possible relation to neuronal migration-related genes. Translational Psychiatry. 2019; 9 (1): 289. DOI: 10.1038/s41398-019-0609-0.

64. Camkurt M., Karababa F., Erdal M., Bayazit H., Kandemir S., Ay M., Kandemir H., Ay O., Cicek E., Selek S., Tasdelen B. Investigation of dysregulation of several microRNAs in peripheral blood of schizophrenia patients. Clinical Psychopharmacology and Neuroscience. 2016; 14 (3): 256–260. DOI: 10.9758/cpn.2016.14.3.256.

65. Sun X.Y., Lu J., Zhang L., Song H.T., Zhao L., Fan H.M., Zhong A.F., Niu W., Guo Z.M., Dai Y.H., Chen C., Ding Y.F., Zhang L.Y. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients. Journal of Clinical Neuroscience. 2015; 22 (3): 570–574. DOI: 10.1016/j.jocn.2014.08.018.

66. Kalia M., Costa E., Silva J. Biomarkers of psychiatric diseases: current status and future prospects. Metabolism. 2015; 64 (3): S11–S15. DOI: 10.1016/j.metabol.2014.10.026.


Для цитирования:


Гареев И.Ф., Бейлерли О.А., Измайлов А.А. Потенциал использования микроРНК в судебно-медицинской экспертизе. Бюллетень сибирской медицины. 2021;20(3):129-140. https://doi.org/10.20538/1682-0363-2021-3-129-140

For citation:


Gareev I.F., Beylerli O.A., Izmailov A.A. The potential use of miRNAs in forensic science. Bulletin of Siberian Medicine. 2021;20(3):129-140. https://doi.org/10.20538/1682-0363-2021-3-129-140

Просмотров: 68


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)