Preview

Бюллетень сибирской медицины

Расширенный поиск

Транскутанная сенсибилизация. Все ли мы знаем?

https://doi.org/10.20538/1682-0363-2021-4-180-192

Полный текст:

Аннотация

Согласно существующей в настоящее время гипотезе, транскутанная сенсибилизация является одним из ведущих механизмов формирования пищевой аллергии.

Цель: анализ иммунологических механизмов формирования транскутанной сенсибилизации и роли дефекта кожного барьера.

Для написания обзора был проведен поиск полнотекстовых публикаций на английском языке в базах данных PubMed, UpToDate, Web of Science, Scopus по ключевым словам: epicutaneous sensitization, atopic dermatitis, skin barrier defect, food allergy. Статьи должны были находиться в свободном доступе и представлять наиболее актуальную информацию по теме. Исследования отбирались по принципу наибольшей выборки и индекса цитирования. После первичного отбора публикаций авторы изучили их на предмет соответствия информации тематике исследования. В обзор включена 101 публикация за период 1998–2020 гг.

Рассмотрены данные экспериментальных исследований, изложены современные представления о гипотезе двойного воздействия аллергена, приведены данные исследований, доказывающих клиническую значимость транскутанной сенсибилизации в формировании пищевой аллергии. Знание механизмов развития транскутанной сенсибилизации необходимо для выработки стратегий профилактики пищевой аллергии. Одним из перспективных направлений профилактики пищевой аллергии является использование эмолиентов, которые восстанавливают кожный ответ, однако исследования, посвященные профилактическому приему эмолиентов, в настоящее время не дают однозначного ответа.

В настоящее время накоплено недостаточно данных ни «за», ни «против» существования механизма транскутанной сенсибилизации как обязательного условия для формирования пищевой аллергии. Требуется дальнейшее проведение исследований в данном направлении. 

Об авторах

Г. А. Новик
Санкт-Петербургский государственный педиатрический медицинский университет (СПбГПМУ)
Россия

д-р мед. наук, профессор, зав. кафедрой педиатрии им. проф. И.М. Воронцова, 

194100, г. Санкт-Петербург, ул. Литовская, 2



М. В. Жданова
Санкт-Петербургский государственный педиатрический медицинский университет (СПбГПМУ)
Россия

канд. мед. наук, доцент, кафедра педиатрии им. профессора И.М. Воронцова, зав. учебной
частью, 

194100, г. Санкт-Петербург, ул. Литовская, 2



А. С. Демидова
Санкт-Петербургский государственный педиатрический медицинский университет (СПбГПМУ)
Россия

ассистент, кафедра педиатрии им. профессора И.М. Воронцова, 

194100, г. Санкт-Петербург, ул. Литовская, 2



Список литературы

1. NIAID-Sponsored Expert Panel, Boyce J.A., Assa’ad A. et al. Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol. 2010; 126 (6): S1–58. DOI: 10.1016/j.jaci.2010.10.007.

2. Sampson H.A., Aceves S., Bock S.A. et al. Food allergy: a practice parameter update-2014. J. Allergy Clin. Immunol. 2014; 134 (5): 1016–1025.e43. DOI: 10.1016/j.jaci.2014.05.013.

3. Eigenmann P.A., Beyer K., Lack G. et al. Are avoidance diets still warranted in children with atopic dermatitis? Pediatr. Allergy Immunol. 2020; 31 (1): 19–26. DOI: 10.1111/pai.13104.

4. Warren C.M. et al. Epidemiology and burden of food allergy. Curr. Allergy Asthma Rep. 2020; 20 (2): 6. DOI: 10.1007/s11882-020-0898-7.

5. Hill D.J., Hosking C.S., de Benedictis F.M. et al. Confirmation of the association between high levels of immunoglobulin E food sensitization and eczema in infancy: an international study. Clin. Exp. Allergy. 2008; 38 (1): 161–168. DOI: 10.1111/j.1365-2222.2007.02861.x.

6. Eigenmann P.A., Calza A.M. Diagnosis of IgE-mediated food allergy among Swiss children with atopic dermatitis. Pediatr. Allergy Immunol. 2000; 11 (2): 95–100. DOI: 10.1034/j.1399-3038.2000.00071.x.

7. Eigenmann P.A., Sicherer S.H., Borkowski T.A. et al. Prevalence of IgE-mediated food allergy among children with atopic dermatitis. Pediatrics. 1998; 101 (3): e8. DOI: 10.1542/peds.101.3.e8.

8. Sampson H.A., McCaskill C.C. Food hypersensitivity and atopic dermatitis: evaluation of 113 patients. J. Pediatr. 1985; 107 (5): 669–675. DOI: 10.1016/s0022-3476(85)80390-5.

9. Lack G. et al. Epidemiologic risks for food allergy. J. Allergy Clin. Immunol. 2008;121 (6): 1331–1336. DOI: 10.1016/j. jaci.2008.04.032.

10. Yu R., Igawa K., Handa Y., Munetsugu T., Satoh T., Yokozeki H. Basophils and mast cells are crucial for reactions due to epicutaneous sensitization to ovalbumin. Exp. Dermatol. 2017; 26 (9): 778–784. DOI: 10.1111/exd.13279.

11. Hsieh K.Y., Tsai C.C., Wu C.H., Lin R.H. Epicutaneous exposure to protein antigen and food allergy. Clin. Exp. Allergy. 2003; 33 (8): 1067–1075. DOI: 10.1046/j.1365-2222.2003.01724.x.

12. Strid J., Hourihane J., Kimber I. et al. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur. J. Immunol. 2004; 34 (8): 2100–2109. DOI: 10.1002/eji.200425196.

13. Benor S., Shani N., Etkin S., Bondar E., Kivity S., Langier S. Epicutaneous exposure to peanut oil induces systemic and pulmonary allergic reaction in mice. Int. Arch. Allergy Immunol. 2019; 179 (3): 187–191. DOI: 10.1159/000497382.

14. Glocova I., Brück J., Geisel J., Müller-Hermelink E., Widmaier K., Yazdi A.S. et al. Induction of skin-pathogenic Th22 cells by epicutaneous allergen exposure. J. Dermatol. Sci. 2017; 87 (3): 268–277. DOI: 10.1016/j.jdermsci.2017.06.006.

15. Koshiba R., Oba T., Fuwa A., Arai K., Sasaki N., Kitazawa G. et al. Aggravation of food allergy by skin sensitization via systemic Th2 enhancement. Int. Arch. Allergy Immunol. 2021; 182 (4): 292–300. DOI: 10.1159/000511239.

16. Murakami H., Ogawa T., Takafuta A., Yano E., Zaima N., Moriyama T. Percutaneous sensitization to soybean proteins is attenuated by oral tolerance. J. Nutr. Sci. Vitaminol. (Tokyo). 2018; 64 (6): 483–486. DOI: 10.3177/jnsv.64.483.

17. Strid J., Hourihane J., Kimber I. et al. Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization. Clin. Exp. Allergy. 2005; 35 (6): 757–766. DOI: 10.1111/j.1365-2222.2005.02260.x.

18. Iwamoto H., Matsubara T., Okamoto T., Matsumoto T., Yoshikawa M., Takeda Y. Ingestion of casein hydrolysate induces oral tolerance and suppresses subsequent epicutaneous sensitization and development of anaphylaxis reaction to casein in mice. Int. Arch. Allergy Immunol. 2019; 179 (3): 221–230. DOI: 10.1159/000497410.

19. Oji V., Eckl K.M., Aufenvenne K., Natebus M., Tarinski T., Ackermann K. et al. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. Am. J. Hum. Genet. 2010; 87 (2): 274–281. DOI: 10.1016/j.ajhg.2010.07.005.

20. Drislane C., Irvine A.D. The role of filaggrin in atopic dermatitis and allergic disease. Ann. Allergy Asthma Immunol. 2020; 124 (1): 36–43. DOI: 10.1016/j.anai.2019.10.008.

21. Irvine A.D. et al. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011; 365 (14): 1315–1327. DOI: 10.1056/NEJMra1011040.

22. Van den Oord R.A., Sheikh A. Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ. 2009; 339: b2433. DOI: 10.1136/bmj. b2433.

23. Dębińska A. et al. Filaggrin loss-of-function mutations as a predictor for atopic eczema, allergic sensitization and eczema-associated asthma in Polish children population. Adv. Clin. Exp. Med. 2017; 26 (6): 991–998. DOI: 10.17219/acem/61430.

24. Brown S.J. et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J. Allergy Clin. Immunol. 2011; 127 (3): 661–667. DOI: 10.1016/j.jaci.2011.01.031.

25. Brough H.A. et al. Peanut allergy: Effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J. Allergy Clin. Immunol. 2014; 134 (4): 867–875. e1. DOI: 10.1016/j.jaci.2014.08.011.

26. Marenholz I. et al. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. Nat. Commun. 2017; 8 (1): 1056. DOI: 10.1038/s41467-017-01220-0.

27. Chan A. et al. Filaggrin mutations increase allergic airway disease in childhood and adolescence through interactions with eczema and aeroallergen sensitization. Clin. Exp. Allergy. 2018; 48 (2):147–155. DOI: 10.1111/cea.13077.

28. Simpson A. et al. Early-life inhalant allergen exposure, filaggrin genotype and the development of sensitization from infancy to adolescence. J. Allergy Clin. Immunol. 2020; 145 (3): 993–1001. DOI: 10.1016/j.jaci.2019.08.041.

29. Cole C., Kroboth K., Schurch N.J., Sandilands A., Sherstnev A., O’Regan G.M. et al. Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2014; 134 (1): 82–91. DOI: 10.1016/j.jaci.2014.04.021.

30. Czarnowicki T., Krueger J.G., Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J. Allergy Clin. Immunol. 2017; 139 (6): 1723– 1734. DOI: 10.1016/j.jaci.2017.04.004.

31. Kelleher M.M. et al. Skin barrier impairment at birth predicts food allergy at 2 years of age. J. Allergy Clin. Immunol. 2016; 137 (4): 1111–1116.e8. DOI: 10.1016/j.jaci.2015.12.1312.

32. Leung D.Y. New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol. Int. 2013; 62 (2): 151–161. DOI: 10.2332/allergolint.13-RAI-0564.

33. De Benedetto A., Rafaels N.M., McGirt L.Y., Ivanov A.I., Georas S.N., Cheadle C. et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2011; 127 (3):773–86e1-7. DOI: 10.1016/j.jaci.2010.10.018.

34. Furuse M., Hata M., Furuse K. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 2002; 156 (6): 1099–1111. DOI: 10.1083/jcb.200110122.

35. Brandner J.M., Zorn-Kruppa M., Yoshida T. et al. Epidermal tight junctions in health and disease. Tissue Barriers. 2015; 3 (1–2): e974451. DOI: 10.4161/21688370.2014.974451.

36. Cork M.J., Robinson D.A., Vasilopoulos Y. et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J. Allergy Clin. Immunol. 2006; 118 (1): 3–21. DOI: 10.1016/j.jaci.2006.04.042.

37. Vasilopoulos Y., Cork M.J., Murphy R., Williams H.C., Robinson D.A, Duff G.W. et al. Genetic association between an AACC insertion in the 3′UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J. Invest. Dermatol. 2004; 123 (1): 62–66. DOI: 10.1111/j.0022-202X.2004.22708.x.

38. Walley A.J. Chavanas S., Moffatt M.F., Esnouf R.M., Ubhi B., Lawrence R. et al. Gene polymorphism in Netherton and common atopic disease. Nat. Genet. 2001; 29 (2): 175–178. DOI: 10.1038/ng728.

39. Kato A., Fukai K., Oiso N. et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br. J. Dermatol. 2003; 148 (4): 665–669. DOI: 10.1046/j.1365-2133.2003.05243.x.

40. Lan C.C., Tu H.P., Wu C.S. et al. Distinct SPINK5 and IL31 polymorphisms are associated with atopic eczema and non-atopic hand dermatitis in Taiwanese nursing population. Exp. Dermatol. 2011; 20 (12): 975–979. DOI: 10.1111/j.1600-0625.2011.01374.x.

41. Zhao L.P., Di Z., Zhang L. et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J. Eur. Acad. Dermatol. Venereol. 2012; 26 (5): 572–577. DOI: 10.1111/j.1468-3083.2011.04120.x.

42. Badertscher K., Bronnimann M., Karlen S., Braathen L.R., Yawalkar N. Mast cell chymase is increased in atopic dermatitis but not in psoriasis. Arch. Dermatol. Res. 2005; 296. (10): 503–506. DOI: 10.1007/s00403-005-0542-3.

43. Tomimori Y., Muto T., Fukami H., Saito K., Horikawa C., Tsuruoka N. et al. Chymase participates in chronic dermatitis by inducing eosinophil infiltration. Lab. Invest. 2002; 82 (6): 789–794. DOI: 10.1097/01.lab.0000018827.78602.f4.

44. Mao X.Q., Shirakawa T., Enomoto T., Shimazu S., Dake Y., Kitano H. et al. Association between variants of mast cell chymase gene and serum IgE levels in eczema. Hum. Hered. 1998; 48 (1): 38–41. DOI: 10.1159/000022782.

45. Shimura S., Takai T., Iida H., Maruyama N., Ochi H., Kamijo S. et al. Epicutaneous allergic sensitization by cooperation between allergen protease activity and mechanical skin barrier damage in mice. J. Invest. Dermatol. 2016; 136 (7): 1408– 1417. DOI: 10.1016/j.jid.2016.02.810.

46. Deleuran M., Ellingsen A.R., Paludan K., Schou C., Thestrup-Pedersen K. Purified Der p1 and p2 patch tests in patients with atopic dermatitis: evidence for both allergenicity and proteolytic irritancy. Acta Derm. Venereol. 1998; 78(4): 241–243. DOI: 10.1080/000155598441783.

47. Leyva-Castillo J.-M., McGurk A., Raif Geha M.D. Allergic skin inflammation and S. aureus skin colonization are mutually reinforcing. Clinical Immunology. 2020; 218: 108511. DOI: 10.1016/j.clim.2020.108511.

48. Laouini D., Kawamoto S., Yalcindag A., Bryce P., Mizoguchi E., Oettgen H. et al. Epicutaneous sensitization with superantigen induces allergic skin inflammation. J. Allergy Clin. Immunol. 2003; 112 (5): 981–987. DOI: 10.1016/j.jaci.2003.07.007.

49. Skov L., Olsen J.V., Giorno R., Schlievert P.M., Baadsgaard O., Leung D.Y. Application of Staphylococcal enterotoxin B on normal and atopic skin induces up-regulation of T cells by a superantigen-mediated mechanism. J. Allergy Clin. Immunol. 2000; 105 (4): 820–826. DOI: 10.1067/mai.2000.105524.

50. Meylan P., Lang C., Mermoud S., Johannsen A., Norrenberg S., Hohl D. et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J. Invest. Dermatol. 2017; 137 (12): 2497–2504. DOI: 10.1016/j.jid.2017.07.834.

51. Ganeshan K., Neilsen C.V., Hadsaitong A., Schleimer R.P., Luo X., Bryce P.J. Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J. Allergy Clin. Immunol. 2009; 123 (1): 231–238.e4. DOI: 10.1016/j.jaci.2008.10.011.

52. Forbes-Blom E., Camberis M., Prout M., Tang S.C., Le Gros G. Staphylococcal-derived superantigen enhances peanut induced Th2 responses in the skin. Clin. Exp. Allergy. 2012; 42 (2): 305–314. DOI: 10.1111/j.1365-2222.2011.03861.x.

53. Jones A.L., Curran-Everett D., Leung D.Y.M. Food allergy is associated with Staphylococcus aureus colonization in children with atopic dermatitis. J. Allergy Clin. Immunol. 2016; 137 (4): 1247–1248.e3. DOI: 10.1016/j.jaci.2016.01.010.

54. Tsilochristou O., du Toit G., Sayre P.H. et al. Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J. Allergy Clin. Immunol. 2019; 144 (2): 494–503. DOI: 10.1016/j.jaci.2019.04.025.

55. Leyva-Castillo J.M., McGurk A., Geha M.D.R. Allergic skin inflammation and S. aureus skin colonization are mutually reinforcing. Clin. Immunol. 2020; 218: 108511. DOI: 10.1016/j.clim.2020.108511.

56. Trendelenburg V. et al. Hen’s egg allergen in house and bed dust is significantly increased after hen’s egg consumption – A pilot study. Allergy. 2018; 73 (1): 261–264. DOI: 10.1111/all.13303.

57. Foong R.X., Brough H. The role of environmental exposure to peanut in the development of clinical allergy to peanut. Clin. Exp. Allergy. 2017; 47 (10): 1232–1238. DOI: 10.1111/cea.12992.

58. Bertelsen R.J. et al. Food allergens in mattress dust in Norwegian homes – a potentially important source of allergen exposure. Clin. Exp. Allergy. 2014; 44 (1): 142–149. DOI: 10.1111/cea.12231.

59. Boussault P. et al. Oatsensitization in children with atopic dermatitis: prevalence, risks and associated factors. Allergy. 2007; 62 (11): 1251–1256. DOI: 10.1111/j.1398-9995.2007.01527.x.

60. Lack G. et al. Factors associated wit the development of peanut allergy in childhood. N. Engl. J. Med. 2003; 348 (11): 977–985. DOI: 10.1056/NEJMoa013536.

61. Lina T. et al. Epicutaneous sensitization with ovalbumin, staphylococcal enterotoxin B and vitamin D analogue induces atopic dermatitis in mice. J. Cent. South Univ. (Med. Sci.) 2017; 42 (9): 1023–1029. DOI: 10.11817/j.issn.1672-7347.2017.09.005.

62. Noti M. et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J. Allergy Clin. Immunol. 2014; 133 (5): 1390–1399. DOI: 10.1016/j.jaci.2014.01.021.

63. Kawasaki A. et al. Skin inflammation exacerbates food allergy symptoms in epicutaneously sensitized mice. Allergy. 2018; 73 (6): 1313–1321. DOI: 10.1111/all.13404.

64. Palomares O., Akdis M., Martin-Fontecha M., Akdis C.A. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol. Rev. 2017; 278: 219–236. DOI: 10.1111/imr.12555.

65. Holm J., Willumsen N., Wurtzen P.A., Christensen L.H., Lund K. Facilitated antigen presentation and its inhibition by blocking IgG antibodies depends on IgE repertoire complexity. J. Allergy Clin. Immunol. 2011; 127 (4): 1029–1037. DOI: 10.1016/j.jaci.2011.01.062.

66. Turcanu V., Stephens A.C., Chan S.M., Rance F., Lack G. IgE-mediated facilitated antigen presentation underlies higher immune responses in peanut allergy. Allergy. 2010; 65 (10): 1274–1281. DOI: 10.1111/j.1398-9995.2010.02367.x.

67. Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy. 2020; 75 (1): 54–62. DOI: 10.1111/all.13954.

68. Brough H.A., Nadeau K.C., Sindher S.B., Alkotob S.S., Chan S., Bahnson H.T. et al. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy. 2020; 75 (9): 2185–2205. DOI: 10.1111/all.14304.

69. Hsieh K.Y. et al. Epicutaneous exposure to protein antigen and food allergy. Clin. Exp. Allergy. 2003; 33 (8): 1067–1075. DOI: 10.1046/j.1365-2222.2003.01724.x.

70. Hussain M. et al. Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. J. Allergy Clin. Immunol. 2018; 141 (1): 223– 234.e5 DOI: 10.1016/j.jaci.2017.02.035.

71. Sano Y., Masuda K., Tamagawa-Mineoka R., Matsunaka H., Murakami Y., Yamashita R. et al. Thymic stromal lymphopoietin expression is increased in the horny layer of patients with atopic dermatitis. Clin. Exp. Immunol. 2013; 171 (3): 330–337. DOI: 10.1111/cei.12021.

72. Al-Shami A., Spolski R., Kelly J., Keane-Myers A., Leonard W.J. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med. 2005; 202 (6): 829– 839. DOI: 10.1084/jem.20050199.

73. He R., Oyoshi M.K., Garibyan L., Kumar L., Ziegler S.F., Geha R.S. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proc. Nat. Acad. Sci. USA. 2008; 105 (33): 11875–11880. DOI: 10.1073/pnas.0801532105.

74. Zhou B., Comeau M.R., De S.T., Liggitt H.D., Dahl M.E., Lewis D.B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nature Immunol. 2005; 6 (10): 1047–1053. DOI: 10.1038/ni1247.

75. Noti M., Kim B.S., Siracusa M.C., Rak G.D., Kubo M., Moghaddam A.E. et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J. Allergy Clin. Immunol. 2014; 133: 1390–1399 e1–6. DOI: 10.1016/j.jaci.2014.01.021.

76. Bogiatzi S.I., Fernandez I., Bichet J.C., Marloie-Provost M.A., Volpe E., Sastre X. et al. Cutting edge: Proinflammatory and Th2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J. Immunol. 2007; 178 (3): 3373–3377. DOI: 10.4049/jimmunol.178.6.3373.

77. Oyoshi M.K., Larson R.P., Ziegler S.F., Geha R.S. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J. Allergy Clin. Immunol. 2010; 126 (5): 976–984. DOI: 10.1016/j.jaci.2010.08.041.

78. Tamari M. et al. The optimal age for epicutaneous sensitization following tape-stripping in BALB/c mice. Allergology International. 2018; 67 (3): 380–387. DOI: 10.1016/j.alit.2018.01.003.

79. Cayrol C., Girard J.P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 2014; 31: 31–37. DOI: 10.1016/j.coi.2014.09.004.

80. Savinko T., Matikainen S., Saarialho-Kere U., Lehto M., Wang G., Lehtimaki S. et al. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J. Invest. Dermatol. 2012; 132 (5): 1392–1400. DOI: 10.1038/jid.2011.446.

81. Tamagawa-Mineoka R., Okuzawa Y., Masuda K., Katoh N. Increased serum levels of interleukin 33 in patients with atopic dermatitis. J. Am. Acad. Dermatol. 2014; 70 (5): 882–888. DOI: 10.1016/j.jaad.2014.01.867.

82. Komai-Koma M., Brombacher F., Pushparaj P.N., Arendse B., McSharry C., Alexander J. et al. Interleukin-33 amplifies IgE synthesis and triggers mast cell degranulation via interleukin-4 in naive mice. Allergy. 2012; 67 (9): 1118–1126. DOI: 10.1111/j.1398-9995.2012.02859.x.

83. Muto T., Fukuoka A., Kabashima K., Ziegler S.F., Nakanishi K., Matsushita K. et al. The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int. Immunol. 2014; 26 (10): 539–549. DOI: 10.1093/intimm/dxu058.

84. Galand C. et al. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J. Allergy Clin Immunol. 2016; 138 (5): 1356–1366. DOI: 10.1016/j.jaci.2016.03.056.

85. Walker M.T. et al. Mechanism for initiation of food allergy: Dependence on skin barrier mutations and environmental allergen costimulation. J. Allergy Clin. Immunol. 2018; 141 (5): 1711–1725.e9. DOI: 10.1016/j.jaci.2018.02.003.

86. Chinthrajah S., Cao S., Liu C., Lyu S.C., Sindher S.B., Long A. et al. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. JCI Insight. 2019; 4 (22): e131347. DOI: 10.1172/jci.insight.131347.

87. Chen Y.L., Gutowska-Owsiak D., Hardman C.S., Westmoreland M., MacKenzie T., Cifuentes L. et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci. Transl. Med. 2019; (515): eaax2945. DOI: 10.1126/scitranslmed.aax2945.

88. Mitamura Y. et al. IL-24: A new player in the pathogenesis of pro-inflammatory and allergic skin diseases. Allergology International. 2020; 69 (3): 405–411. DOI: 10.1016/j.alit.2019.12.003.

89. Vickery B.P., Burks A.W. Immunotherapy in the treatment of food allergy: focus on oral tolerance. Curr. Opin. Allergy Clin. Immunol. 2009; 9 (4): 364–370. DOI: 10.1097/ACI.0b013e32832d9add.

90. Pearson R.M., Casey L.M., Hughes K.R., Miller S.D., Shea L.D. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv. Drug. Deliver Rev. 2017; 114: 240–255. DOI: 10.1016/j.addr.2017.04.005.

91. Strobel S., Ferguson A. Immune responses to fed protein antigens in mice. 3. Systemic tolerance or priming is related to age at which antigen is first encountered. Pediatr. Res. 1984; 18: 588–594. DOI: 10.1203/00006450-198407000-00004.

92. Matsubara T., Iwamoto H., Nakazato Y., Okamoto T., Ehara T., Izumi H., Takeda Y. Ingestion of partially hydrolyzed whey protein suppresses epicutaneous sensitization to β-lactoglobulin in mice. Pediatr. Allergy Immunol. 2018 ;29 (4): 433–440. DOI: 10.1111/pai.12887.

93. Murakami H., Ogawa T., Takafuta A., Yano E., Zaima N., Moriyama T. Percutaneous sensitization to soybean proteins is attenuated by oral tolerance. J. Nutr. Sci. Vitaminol. (Tokyo). 2018; 64 (6): 483–486. DOI: 10.3177/jnsv.64.483. PMID: 30606971.

94. Levy Y., Broides A., Segal N., Danon Y.L. Peanut and tree nut allergy in children: role of peanut snacks in Israel? Allergy. 2003; 58 (11): 1206–1207. DOI: 10.1046/j.1398-9995.2003.00307.x.

95. Du Toit G., Katz Y., Sasieni P., Mesher D., Maleki S.J., Fisher H.R. et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J. Allergy Clin. Immunol. 2008; 122 (5): 984–991. DOI: 10.1016/j.jaci.2008.08.039.

96. Katz Y., Rajuan N., Goldberg M.R., Eisenberg E., Heyman E., Cohen A. et al: Early exposure to cow’s milk protein is protective against IgE-mediated cow’s milk protein allergy. J. Allergy Clin. Immunol. 2010; 126 (1): 77.e1–82. DOI: 10.1016/j.jaci.2010.04.020.

97. Muraro A., Halken S., Arshad S.H., Beyer K., Dubois A.E.J., Du Toit G. et al. EAACI food allergy and anaphylaxis guidelines. Primary prevention of food allergy. Allergy. 2014; 69 (5): 590–601. DOI: 10.1111/all.12398.

98. Horimukai K. et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J. Allergy Clin. Immunol. 2014; 134 (4): 824–830. DOI: 10.1016/j.jaci.2014.07.060.

99. Simpson E.L., Chalmers J.R., Hanifin J.M., Thomas K.S., Cork M.J., McLean W.H. et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J. Allergy Clin. Immunol. 2014; 134 (4): 818–823. DOI: 10.1016/j.jaci.2014.08.005.

100. Chalmers J.R., Haines R.H., Bradshaw L.E., Montgomery A.A., Thomas K.S., Brown S.J. et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet. 2020; 395 (10228): 962– 972. DOI: 10.1016/S0140-6736(19)32984-8.

101. Dissanayake E., Yumi Tanib Y., Nagaic K. et al. Skin care and synbiotics for prevention of atopic dermatitis or food allergy in newborn infants: A 2 × 2 factorial, randomized, non-treatment controlled trial. Int. Arch. Allergy Immunol. 2019; 180 (3): 202–211. DOI: 10.1159/000501636.


Рецензия

Для цитирования:


Новик Г.А., Жданова М.В., Демидова А.С. Транскутанная сенсибилизация. Все ли мы знаем? Бюллетень сибирской медицины. 2021;20(4):180-192. https://doi.org/10.20538/1682-0363-2021-4-180-192

For citation:


Novik G.A., Zhdanova M.V., Demidova A.S. Epicutaneous sensitization. what do we know? Bulletin of Siberian Medicine. 2021;20(4):180-192. (In Russ.) https://doi.org/10.20538/1682-0363-2021-4-180-192

Просмотров: 46


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)