Preview

Бюллетень сибирской медицины

Расширенный поиск

Разработка бинарных технологий лучевой терапии злокачественных новообразований: состояние и проблемы

https://doi.org/10.20538/1682-0363-2017-3-192-209

Полный текст:

Аннотация

Обзор посвящен проблемам развития бинарных технологий лучевой терапии – нейтрон- и фотон-захватной терапии злокачественных новообразований. В технологиях используется принцип биологического нацеливания: облучение опухоли с предварительно доставленными в нее специальными препаратами, повышающими выделение энергии и относительную биологическую эффективность первичного излучения. Описаны основы методов, характеристики источников внешнего облучения и используемых препаратов, этапы разработки технологий. Развитие и внедрение бинарных технологий привлекает большое количество исследователей, но сдерживается нехваткой действующих источников эпитепловых нейтронов (реакторов, генераторов нейтронов на основе ускорителей), отсутствием корректных систем дозиметрического планирования лучевой терапии с учетом динамики и накопления препаратов в опухолях.

Об авторах

Игорь Николаевич Шейно
Государственный научный центр Федеральный медицинский биофизический центр (ГНЦ ФМБЦ) им. А.И. Бурназяна
Россия
канд. физ.-мат. наук, зав. лабораторией, ГНЦ ФМБЦ им. А.И. Бурназяна, г. Москва.


Павел Владимирович Ижевский
Государственный научный центр Федеральный медицинский биофизический центр (ГНЦ ФМБЦ) им. А.И. Бурназяна
Россия
канд. мед. наук, доцент, вед. науч. сотрудник, ГНЦ ФМБЦ им. А.И. Бурназяна, г. Москва.


Алексей Андреевич Липенгольц
Государственный научный центр Федеральный медицинский биофизический центр (ГНЦ ФМБЦ) им. А.И. Бурназяна
Россия
канд. физ.-мат. наук, ст. науч. сотрудник, ГНЦ ФМБЦ им. А.И. Бурназяна, г. Москва.


Виктор Николаевич Кулаков
Государственный научный центр Федеральный медицинский биофизический центр (ГНЦ ФМБЦ) им. А.И. Бурназяна
Россия
д-р хим. наук, вед. науч. сотрудник, ГНЦ ФМБЦ им. А.И. Бурназяна, г. Москва.


Александр Рудольфович Вагнер
Национальный исследовательский Томский политехнический университет (НИ ТПУ)
Россия
канд. физ.-мат. наук, НИ ТПУ, г. Томск.


Евгения Сергеевна Сухих
Национальный исследовательский Томский политехнический университет (НИ ТПУ); Томский областной онкологический диспансер (ТООД)
Россия
канд. физ.-мат. наук, медицинский физик, ТООД; ст. преподаватель, НИ ТПУ, г. Томск.


Валерий Александрович Варлачев
Национальный исследовательский Томский политехнический университет (НИ ТПУ)
Россия
д-р техн. наук, профессор, зав. лабораторией, НИ ТПУ, г. Томск.


Список литературы

1. Sauerwein W., Wittig A., Moss R., Nakagawa Y. (eds). Neutron capture therapy: principles and applications. Springer; 2012: 553. doi:10.1007/978-3-642-31334-9.

2. Хохлов В.Ф., Шейно И.Н., Кулаков В.Н. и др. Способ фотон-захватной терапии злокачественных опухолей // Патент РФ 2270045, 2006. Çаявитель ГНЦ-Институт Биофизики ФМБА России.

3. Rolf F. Barth, Graca M., Vicente H., Harling Otto K., Kiger III W.S., Kent J. Riley, Peter J. Binns, Franz M. Wagner, Minoru Suzuki, Teruhito Aihara, Itsuro Kato, Shinji Kawabata. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer // Radiation Oncology. 2012; 7: 146.

4. Moss R.L., Aizawa O., Beynon D., Brugger R., Constantine G., Harling O., Liu H.B., Watkins P. The requirements and development of neutron beams for neutron capture therapy of brain cancer // Journal of Neuro-Oncology. 1997; 33: 27–40.

5. IAEA-TECDOC-1223 «Current status of neutron capture therapy», 2001.

6. Harling O.K., Riley K.J. Fission reactor neutron sources for neutron capture therapy – a critical review // Journal of Neuro-Oncology. 2003; 82: 7–17.

7. Zaitsev K.N., Portnov A.A., Mishcherina O.V., Kulakov V.N., Khokhlov V.F., Meshcherikova V.V., Mitin V.N., Koslovskaya N.G., Sheino I.N.. Neutron capture therapy at the MEPhI reactor // International Journal of Nuclear Science and Technology. 2004; 1: 83–101.

8. Mitin V.N., Kulakov V.N., Khokhlov V.F., Sheino I.N., Bass L.P., Kozlovskaya N.G., Zaitsev K.N., Portnov A.A., Yagnikov S.A., Shiryaev S.V. BNCT of canine osteosarcoma // 12th International Congress on Neutron Capture Therapy. “From the Past to the Future”, October 9-13, 2006, Takamatsu, Kagawa, ed.: Nakagawa Y., Kobayashi T., Fukuda H. Japan, 2006: 135–138.

9. Mitin V.N., Kulakov V.N., Khokhlov V.F., Sheino I.N., Arnopolskaya A.M., Kozlovskaya N.G., Zaitsev K.N., Portnov A.A. Comparison of BNCT and GdNCT efficacy in treatment of canine cancer // Applied Radiation and Isotopes. 2009; 67: 299–301.

10. Çайцев К.Н., Портнов А.А., Сахаров В.К., Трошин В.С., Квасов В.И., Савкин В.А., Мищерина О.В., Липенгольц А.А., Хохлов В.Ф., Кулаков В.Н., Митин В.Н., Козловская Н.Г., Шейно И.Н. Разработка технологии нейтрон-захватной терапии злокачественных опухолей и проведение предклинических исследований на ядерном реакторе ИРТ МИФИ // Инженерная физика. 2007; 2: 122–140.

11. Mitsumoto T., Fujita K., Ogasawara T., Tsutsui H., Yajima S., Maruhashi A., Sakurai Y., Tanaka H.. BNCT system using 30 MeV H-cyclotron. Proceedings of Cyclotrons Lanzhou, China, 2010: 430–432.

12. Abe Y., Fuse M., Fujii R., Nakamura M., Imahoru Y., Itami J. Hospital based boron neutron capture therapy in National Cancer Center. An installation design for the accelerator- based epithermal neutron source. In: Abstracts of 15th International Congress on Neutron Capture Therapy. 2012, Sept. 10–14; Tsukuba, Japan: 109–110.

13. Kumada H., Kurihara H., Yoshioka M., Kobayashi H., Matsumoto H., Sugano T. et al. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy // Appl. Radiat. Isot. 2015; 106: 78–83.

14. Таскаев С.Ю. Ускорительный источник ýпитепловых нейтронов // Физика элементарных частиц и атомного ядра. 2015; 46 (6): 1770–830.

15. Çайди Л., Кашаева Е.А., Лежнин С.И., Малышкин Г.Н., Самарин С.И., Сычева Т.В., Таскаев С.Ю., Фролов С.А. Система формирования пучка нейтронов для борнейтронозахватной терапии // Ядерная физика. 2017; 80 (1): 63–69.

16. Sheino I.N. Dose-supplementary therapy of malignant tumors. Advances in Neutron Capture Therapy 2006. Proceedings of 12th International Congress on Neutron Capture Therapy. “From the Past to the Future”, October 9–13, 2006; Takamatsu, Kagawa, ed.: Nakagawa Y., Kobayashi T., Fukuda H. Japan, 2006: 531–534.

17. McMahon S.J., Paganetti H., Prise K.M. Optimising element choice for nanoparticle radiosensitisers // Nanoscale. 2016; 8 (1): 581–589. doi:10.1039/c5nr07089a.

18. Lipengolts A.A., Khokhlov V.F., Kulakov V.N., Nasonova T.A., Dobrynina O.A., Sheino I.N. Photon capture therapy – process analog of neutron capture therapy. first experimental results of melanoma treatment in Mice. New Challenges in Neutron Capture Therapy 2010. Proceedings of 14th International Congress on Neutron Capture Therapy, October 25–29, 2010, Buenos Aires, Argentina, 2010: 105–106.

19. Lipengolts A.A., Cherepanov A.A., Kulakov V.N., Grigorieva E.Y., Sheino I.N., Klimanov V.A. Antitumor efficacy of extracellular complexes with gadolinium in Binary Radiotherapy // Applied Radiation and Isotopes. 2015; 106: 233–236. doi:10.1016/j.apradiso.2015.07.051.

20. Lipengolts A., Cherepanov A., Kulakov V., Sheino I., Grigorieva E., Klimanov V. Gadolinium enhanced x-rays radiotherapy of murine adenocarcinoma Ca755 // Radiotherapy & Oncology. 2016; 119 (1): 958–959.

21. Apanasevitsch V.I., Lukjanov P.A., Lagureva A.V., Polkovnikova A.S. et al. Sposob foton-zachvatnoj terapii opucholej [The method of photon-capture therapy of tumors]. Patent RF № 2533267, 2013. http://www.freepatent.ru/images/img_patents/2/2533/2533267/patent-2533267.pdf (in Russian).

22. Fairchild R., Bond V.P. Photon activation therapy // Strahlentherapie. 1984; 160: 758–763.

23. Fairchild R.G., Laster B.H., Popenoe E.A. et al. Photonactivation therapy (PAT) // Med. Phys. 1985; 12: 536.

24. Karnas S.J., Yu E., McGarryk R.C., Battista J.J. Optimal photon energies for IUdR K-edge radiosensitization with filtered x-ray and radioisotope sources // Phys. Med. Biol. 1999; 44: 2537–2549.

25. Biston M.C, Joubert A, Charvet A.M, Balosso J., Foray N. In vitro and in vivo optimization of an anti-glioma modality based on synchrotron X-ray photoactivation of platinated drugs // Radiat. Res. 2009; 172 (3): 348–358. doi: 10.1667/RR1650.1

26. Rousseau J., Boudou C., Barth R.F. et al. Enhanced survival and cure of f98 glioma-bearing rats following intracerebral delivery of carboplatin in combination with photon irradiation // Clin. Cancer Res. 2007; 13: 5195–5201.

27. Rousseau J., Barth R.F., Moeschberger M.L, Elleaume H. Efficacy of intracerebral delivery of Carboplatin in combination with photon irradiation for treatment of F98 glioma-bearing rats // Int. J. Radiat. Oncol. Biol. Phys. 2009; 73: 530–536.

28. Biston M.C., Joubert A., Adam J.F., Elleaume H., Bohic S., Charvet A.M., Estève F., Foray N., Balosso J. Cure of Fisher rats bearing radioresistant F98 glioma treated with cis-platinum and irradiated with monochromatic synchrotron X-rays // Cancer Res. 2004; 1, 64 (7): 2317–2323.

29. Estève F., Adam J., Biston M.C, Joubert A., Corde S., Boudou C., Rousseau J., Gastaldo J., Bencokova Z., Charvet A.M, Foray N., Le Bas J.F., Balosso J., Elleaume H. High-Z compounds for synchrotron stereotactic radiotherapy: developments and perspectives // Contrast Media Mol. Imaging. 2006; 1 (2): 60 17193619 (P, S, E, B, D).

30. Bencokova Z., Balosso J., Foray N. Radiobiological features of the anti-cancer strategies involving synchrotron X-rays // J. Synchrotron Rad. 2008; 15: 74–85.

31. Rousseau J., Barth R.F., Fernandez M., Adam J.F., Balosso J., Estève F., Elleaume H. Efficacy of intracerebral delivery of cisplatin in combination with photon irradiation for treatment of brain tumors // J. Neurooncol. 2010; 98(3): 287–295.

32. Adam J.F., Balosso J., Bobyk L., Charvet A.M., Edouard M., Elleaume H., Estève F., Le Bas J.F., Rousseau J/, Joubert A. Radiation Therapy Using Synchrotron Radiation: Preclinical Studies Toward Clinical Trials // Synchrotron radiation news. 2011; 24 (2).

33. Yang W., Huo T., Barth R.F., Gupta N., Weldon M., Grecula J.C., Ross B.D., Hoff B.A., Chou T.C., Rousseau J., Elleaume H. Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors // J. Neurooncol. 2011; 101(3): 379–390.

34. Bobyk L., Edouard M., Deman P., Rousseau J., Adam J.F., Ravanat J.L., Estève F., Balosso J., Barth R.F, Elleaume H. Intracerebral delivery of carboplatin in combination with either 6 MV photons or monoenergetic synchrotron X-rays are equally efficacious for treatment of the F98 rat glioma // J. Exp. Clin. Cancer Res. 2012; 20 (31): 78.

35. Barth R.F., Coderre J.A., Graça M, Vicente H., Blue T.E. Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects // Clinical Cancer Research. 2005; 11: 3987–4002.

36. Barth R.F., Joensuu H. Boron neutron capture therapy for the treatment of glioblastomas and extracranial tumours: As effective, more effective or less effective than photon irradiation? // Radiotherapy and Oncology. 2007; 82(2): 119–122.

37. Barth R.F. Boron neutron capture therapy at the crossroads: Challenges and opportunities // Applied Radiation and Isotopes. 2009; 67: 53–56.

38. Huo T., Barth R.F., Yang W., Nakkula R.J., Koynova R., Tenchov B., Chaudhury A.R., Agius L., Boulikas T., Elleaume H., Lee R.J. Preparation, biodistribution and neurotoxicity of liposomal cisplatin following convection enhanced delivery in normal and F98 glioma bearing rats // PLoS One. 2012; 7 (11).

39. Coquery N., Pannetier N., Farion R., Herbette A., Azurmendi L., Clarencon D., Bauge S., Josserand V., Rome C., Coll J.L., Sun J.S., Barbier E.L., Dutreix M., Remy C.C. Distribution and radiosensitizing effect of cholesterol-coupled Dbait molecule in rat model of glioblastoma // PLoS One. 2012; 7 (7).

40. Li R., Wu W., Liu Q., Wu P., Xie L., Zhu Z., Yang M., Qian X., Ding Y., Yu L., Jiang X., Guan W., Liu B. Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles // PLoS One. 2013.

41. Yang W., Barth R.F., Wu G., Huo T., Tjarks W., Ciesielski M., Fenstermaker R.A., Ross B.D., Wikstrand C.J., Riley K.J., Binns P.J. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors // J. Neurooncol. 2009; 95 (3): 355–365.

42. Kawabata S., Yang W., Barth R.F, Wu G., Huo T., Binns P.J., Riley K.J, Ongayi O., Gottumukala V., Vicente M.G. Convection enhanced delivery of carboranylporphyrins for neutron capture therapy of brain tumors // J. Neurooncol. 2011; 103 (2): 175–185.

43. Seiwert T.Y., Salama J.K., Vokes E.E. The concurrent chemoradiation paradigm - general principles // Nature Clinical Practice Oncology. 2007; 4 (2): 86–100.

44. Chadwick K.H., Leenhouts H.P., Szumiel I. et al. An analysis of the interaction of a platinum complex and radiation with CHO cells using the molecular theory of cell survival // Int. J. Radiat. Biol. 1976; 30: 511–524.

45. Yapp D.T., Lloyd D.K., Zhu J. et al. The potentiation of the effect of radiation treatment by intratumoral delivery of cisplatin // Int. J. Radiat. Oncol. Biol. Phys. 1998; 42: 413–420.

46. Montenegro M., Nahar S.N., Pradhan A.K. et al. Monte Carlo simulations and atomic calculations for Auger processes in biomedical nanotheranostics // J. Phys. Chem A. 2009; 113: 12364–12369.

47. Lim S.N., Pradhan A.K., Barth R.F., Nahar S.N., Nakkula R.J., Yang W., Palmer A.M., Turro C., Weldon M., Bell E.H., Mo X. Tumoricidal activity of low-energy 160- KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells // J. Radiat. Res. 2015; 56 (1): 77–89. doi: 10.1093/jrr/rru084.

48. Shi M., Fortin D., Sanche L., Paquette B. Convection-enhancement delivery of platinum-based drugs and Lipoplatin™ to optimize the concomitant effect with radiotherapy in F98 glioma rat model // Invest. New Drugs. 2015; 33 (3): 555–563. doi:10.1007/s10637-015-0228-4.

49. Yang W., Barth R.F., Huo T. et al. Radiation therapy combined with intracerebral administration of carboplatin for the treatment for brain tumors // Radiat Oncol. 2014; 9: 25.

50. Setua S., Ouberai M., Piccirillo S.G., Watts C., Welland M. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma // Nanoscale. 2014; 6: 10865–10873. doi: 10.1039/c4nr03693j.

51. Mesa A.V., Norman A., Solberg T.D. Dose distributions using kilovoltage X-rays and dose enhancement from iodine contrast agents // Phys. Med. Biol. 1999; 44: 19–55.

52. Verhaegen F., Reniers B., Deblois F., Devic S., Seuntjens J., Hristov D. Dosimetric and microdosimetric study of contrast-enhanced radiotherapy with kilovolt x-rays // Phys. Med. Biol. 2005; 50: 3555–3569.

53. Adam J.F., Elleaume H., Joubert A., Biston M.C., Charvet A.M., Balosso J., Le Bas J.F., Estève F. Synchrotron radiation therapy of malignant brain glioma loaded with an iodinated contrast agent: First trial on rats bearing F98 gliomas // Int. J. Radiat. Oncol. Biol. Phys. 2003; 1 57 (5): 1413–1426.

54. Corde S., Joubert A., Adam J.F, Charvet A.M, Le Bas J.F, Estève F., Elleaume H., Balosso J. Synchrotron radiation-based experimental determination of the optimal energy for cell radiotoxicity enhancement following photoelectric effect on stable iodinated compounds // Br. J. Cancer. 2004, 2; 91 (3): 544–551.

55. Adam J. F., Joubert A., Biston M.C., Charvet A.M., Peoc’h M., Le Bas J.F, Balosso J., Estève F., Elleaume H. Prolonged survival of Fischer rats bearing F98 glioma after iodine-enhanced synchrotron stereotactic radiotherapy // Int. J. Radiat. Onco.l Biol. Phys. 2005a; 7: 16338098.

56. Adam J.F., Biston M.C., Joubert A., Charvet A.M., Le Bas J.F, Estève F., Elleaume H. Enhanced delivery of iodine for synchrotron stereotactic radiotherapy by means of intracarotid injection and blood-brain barrier disruption: quantitative iodine biodistribution studies and associated dosimetry // Int. J. Radiat. Oncol. Biol. Phys. 2005 b; 15, 61 (4): 1173–1182.

57. Edouard M., Broggio D., Prezado Y., Estève F., Elleaume H., Adam J.F. Treatment plans optimization for contrast-enhanced synchrotron stereotactic radiotherapy // Med. Phys. 2010; 37 (6): 5487–5504.

58. Schultz B-J., Wust P., Ludemann L., Jost G., Pietsch H. Monte Carlo simulation of contrast-enhanced whole brain radiotherapy on a CT scanner // Med. Phys. 2011; 38 (8).

59. Garnica-Garza H.M. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep seated tumors // Phys. Med. Biol. 2009; 54: 5411–5425.

60. Perez-Lopez C.E., Garnica-Garza H.M. Monte Carlo modeling and optimization of contrast-enhanced radiotherapy of brain tumors // Phys. Med. Biol. 2011; 56: 4059–4072.

61. Francis D., Richards G.M., Forouzannia A., Mehta M.P., Khuntia D. Motexafin gadolinium: a novel radiosensitizer for brain tumors // Expert Opin Pharmacother. 2009; 10: 2171–2180.

62. Coulter J.A., Hyland W.B., Nicol J., Currell F.J. Radiosensitising nanoparticles as novel cancer therapeutics--pipe dream or realistic prospect? // Clin. Oncol. (R Coll Radiol). 2013; 25: 593–603. 10.1016/j.clon.2013.06.011.

63. Taupin F., Flaender M., Delorme R., Brochard T., Mayol J-F., Arnaud J., Perriat P., Sancey L., Lux F., Barth R., Carrière M., Ravanat J-L, Elleaume H. Gadolinium nanoparticles and contrast agent as radiation sensitizers // Physics in Medicine and Biology. 2015; 60 4449.

64. Sancey L., Lux F., Kotb S., Roux S., Dufort S., Bianchi A. et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy // Br. J. Radiol. 2014; 87: 20140134. doi:10.1259/bjr.20140134.

65. Detappe A., Kunjachan S., Rottmann J., Robar J., Tsiamas P., Korideck H., Tillement O., Ross Berbeco R. AGuIX nanoparticles as a promising platform for image-guided radiation therapy // Cancer Nano. 2015; 6: 4. DOI 10.1186/s12645-015-0012-3.

66. LeDuc G., Roux S., Paruta-Tuarez A., Dufort S., Brauer E., Marais A., Truillet C., Sancey L., Perriat P., Lux F., Tillement O. Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment // Cancer Nanotechnology. 2014, 5: 4. doi:10.1186/s12645-014-0004-8.

67. Schmidt M.A., Payne G.S. Radiotherapy planning using MRI // Phys. Med. Biol. 2015; 60: 323–361.

68. Hainfeld J.F., Slatkin D.N., Smilowitz H.M. The use of gold nanoparticles to enhance radiotherapy in mice // Phys. Med. Biol. 2004; 49: 309– 315.

69. Chithrani B.D.; Jelveh S.; Jalali F.; Van Prooijen, M.; Allen C.; Bristow R.G.; Hill R.P.; Jaffray D.A. Gold nanoparticles as a radiation sensitizer in cancer therapy // Radiat. Res. 2010; 173: 719–728.

70. Hainfeld J.F. et al. Gold nanoparticle imaging and radiotherapy of brain tumors in mice // Nanomedicine. 2013; 8 (10): 1601–1609.

71. Chang M.-Y., Shiau, A.-L., Chen, Y.-H., Chang, C.-J., Chen, H.H.-W., Wu C.-L. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with singledose clinical electron beams on tumor-bearing mice // Cancer Sci. 2008; 99: 1479–1484.

72. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting // Adv. Enzyme Regul. 2001; 41: 189–207.

73. Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines // J. Drug Target. 2007; 15: 457–464.

74. Choi C.H.; Alabi C.A.; Webster P.; Davis M.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles // Proc. Natl. Acad. Sci. USA. 2010; 107: 1235–1240.

75. Prise K.M.; Schettino G., Folkard M., Held K.D. New insights on cell death from radiation exposure // Lancet Oncol. 2005; 6: 520–528.

76. McMahon S.J.; McNamara A.L.; Schuemann J., Prise K.M., Paganetti H. Mitochondria as a target for radiosensitisation by gold nanoparticles // Journal of Physics: Conference Series. 2017; 777 (1): 012008. DOI: 10.1088/1742-6596/777/1/012008.

77. Pignol J., Rakovitch E., Beachey D., LeSech C. Clinical significance of atomic inner shell ionization (ISI) and Auger cascade for radiosensitization using IUdR, BUdR, platinum salts, or gadolinium porphyrin compounds // Int. J. Radiat. Oncol. Biol. Phys. 2003; 15, 55 (4): 1082–1091. 78. Lehnert S. Radiosensitizers and radiochemotherapy in the treatment of cancer. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA, 2015: 515.

78. Butterworth K.T., McMahon S.J., Currell F.J., Prise K.M.. Physical basis and biological mechanisms of gold nanoparticle radiosensitization // Nanoscale. 2012; 4: 4830–4838.

79. Tsiamas P., Liu B., Cifter F., Ngwa W. F., Berbeco R.I., Kappas C., Theodorou K., Marcus K., Makrigiorgos M.G., Sajo E., Zygmanski P. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement // Phys. Med. Biol. 2013; 58: 451–464. doi:10.1088/0031-9155/58/3/451.

80. Polf J.C., Bronk L.F., Driessen W.H.P., Arap W., Pasqualini R., Gillin M. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles // Appl. Phys. Lett. 2011; 98: 193702. http://dx.doi.org/10.1063/1.3589914.

81. LeSech C., Kobayashi K., Usami N., Furusawa Y., Porcel S. Lacombe. Comment on “Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles” // Appl. Phys. Lett. 2011; 98: 193702. http://dx.doi.org/10.1063/1.3675570.

82. Kobayashi K. et al. Enhancement of X-ray-induced breaks in DNA bound to molecules containing platinum: a possible application to hadrontherapy // Radiat. Res. 2002; 157: 32. http://dx.doi.org/10.1667/0033-7587(2002)157[0032:EOXRIB]2.0.CO;2.

83. Lechtman E., Mashouf S., Chattopadhyay N., Keller B., Lai P., Cai Z., Reilly R., Pignol J. A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness // Phys. Med. Biol. 2013; 58 (10): 3075–3087. doi: 10.1088/0031-9155/58/10/3075.

84. Štefančíková L., Lacombe S., Salado D., Porcel E., Pagáčová E., Tillement O., Lux F., Depeš D., Kozubek S., Falk M. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells // Journal of Nanobiotechnology. 2016; 14: 63. doi: 10.1186/s12951-016-0215-8.

85. Detappe A., Kunjachan S., Drané P., Kotb S., Myronakis M., Biancur D.E., Ireland T., Wagar M., Lux F., Tillement O., Berbeco R. Key clinical beam parameters for nanoparticle-mediated radiation dose amplification // Sci. Rep. 2016; 6: 34040. doi: 10.1038/srep34040.

86. Jacob Van Dyk. Advances in modern radiation therapy, Medical Physics Pub. Corp. 2005.

87. Connell P.P., Hellman S. Advances in radiotherapy and implications for the next century: a historical perspective // Cancer Res. 2009; 69: 383–392. 10.1158/0008-5472.CAN-07-6871

88. Bergs J.W., Wacker M.G., Hehlgans S., Piiper A., Multhoff G., Rёodel C., Rёodel F. The role of recent nanotechnology in enhancing the efficacy of radiation therapy // BBA – Reviews on Cancer. 2015. doi: 10.1016/j.bbcan.2015.06.008.

89. Espinoza-Castaneda M., de la Escosura-Muniz A., Gonzalez-Ortiz G., Martin-Orue S.M, Perez J.F., Merkoci A. Casein modified gold nanoparticles for future theranostic applications // Biosens Bioelectron. 2013; 40 (1): 271–276.

90. Retif P., Pinel S., Toussaint M., Frochot C., Chouikrat R., Bastogne T., Barberi-Heyob M. Nanoparticles for radiation therapy Enhancement: the key parameters // Theranostics. 2015; 5 (9): 1030–1045.


Для цитирования:


Шейно И.Н., Ижевский П.В., Липенгольц А.А., Кулаков В.Н., Вагнер А.Р., Сухих Е.С., Варлачев В.А. Разработка бинарных технологий лучевой терапии злокачественных новообразований: состояние и проблемы. Бюллетень сибирской медицины. 2017;16(3):192-209. https://doi.org/10.20538/1682-0363-2017-3-192-209

For citation:


Sheino I.N., Izhevskij P.V., Lipengolts A.A., Kulakov V.N., Wagner A.A., Sukhikh E.S., Varlachev V.A. Development of binary technologies of radiotherapy of malignant neoplasms: condition and problems. Bulletin of Siberian Medicine. 2017;16(3):192-209. (In Russ.) https://doi.org/10.20538/1682-0363-2017-3-192-209

Просмотров: 198


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)